On the Development of the Compound Nucleus Model

  • E. P. Wigner
Part of the The Collected Works of Eugene Paul Wigner book series (WIGNER, volume B / 6)

Abstract

The compound nucleus model pictures the nuclear reaction as a succession of two events. The first event is the union of the colliding nuclei into a single unit, the so-called compound nucleus. This compound nucleus, although not stable, has many of the properties of stable nuclei. In particular, it has rather well defined energy levels. The second event is the disintegration of the compound nucleus, either into the nuclei from which it was formed, or into another pair of nuclei. In the first case, no reaction, only a scattering process has taken place; the second case corresponds to a real reaction.

Keywords

Radium Assure Toll Como 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Polanyi, Z. Physik, 2, 90 (1920 ).ADSCrossRefGoogle Scholar
  2. 2.
    The most useful model for the simplest type of exchange reactions is the adiabatic model. Cf. F. London, Sommerfeld Festschrift, p. 104 ( Leipzig: S. Hirzel, 1928) .Google Scholar
  3. 3.
    N. Bohr and F. Kalckar, Kgl. Danske Vidensknb. Selskab, Mat.-Fys. Medd., 14, 10 (1937 ).Google Scholar
  4. 4.
    P. B. Moon and J. R. Tillman, Nature, 135, 904 (1935);ADSCrossRefGoogle Scholar
  5. L. Szilard, Nature, 136, 150 (1935 ); Google Scholar
  6. T. Bjerge and C. H. Westcott, Proc. Roy. Soc. ( London), A150, 709 ( 1935) ;ADSGoogle Scholar
  7. E. Amaldi and E. Fermi, Ricerca Sci., 1, 310 (1936 ) ; Google Scholar
  8. J. R. Dunning, G. B. Pegram, G. A. Fink, and D. P. Mitchell, Phys. Rev., 48, 265 (1935 ). ADSCrossRefGoogle Scholar
  9. H. A. Bethe, Rev. Mod. Phys., 9, 71 (1937 );Google Scholar
  10. C. Breit, Phys. Rev., 58, 1068 ( 1940 ).ADSMATHCrossRefGoogle Scholar
  11. C. Breit, Phys. Rev.,69, 472 ( 1946 ).ADSCrossRefGoogle Scholar
  12. 6.
    L. R. Hafstad and M. A. Tuve, Phys. Rev., 48, 306 (1935);ADSCrossRefGoogle Scholar
  13. L. R. Hafstad, N. P. Heydenberg, and M. A. Tuve, ibid., 50, 504 (1936 );ADSGoogle Scholar
  14. R. G. Herb, D. W. Kerst, and J. L. McKibben, ibid., 51, 691 ( 1937 );ADSGoogle Scholar
  15. E J. Bernet, R. G. Herb, and D. B. Parkinson, ibid., 54, 398 (1938).ADSGoogle Scholar
  16. 7.
    V. F. Weisskopf and D. H. Ewing, Phys. Rev., 57, 472, 935 (1940).ADSCrossRefGoogle Scholar
  17. 8.
    P. Gugelot, Phys. Rev., 93, 425 (1954).ADSCrossRefGoogle Scholar
  18. B. L. Cohen, ibid., 92, 1245 (1953).ADSMATHGoogle Scholar
  19. 9.
    O. Hirzel and H. Waffler, Hely. Phys. Acta, 20, 373 (1947);Google Scholar
  20. E. B. Paul and R. L. Clarke, Can. J. Phys., 31, 267 (1953).ADSCrossRefGoogle Scholar
  21. 10.
    E. D. Courant, Phys. Rev., 82, 703 (1951);ADSMATHCrossRefGoogle Scholar
  22. H. McManus and W. T. Sharp, ibid., 87, 188 ( 1952).Google Scholar
  23. 11.
    M. G. Mayer, Phys. Rev., 74, 235 (1948);.ADSCrossRefGoogle Scholar
  24. W. Elsasser, Phys. Radium, 5,825 ( 1934).Google Scholar
  25. 12.
    O. Haxel, J. Jensen, and H. Suess, Z. Physik, 128, 295 ( 1950).ADSMATHCrossRefGoogle Scholar
  26. 13.
    R. Fields, B. Russell, D. Sachs, and A. Wattenberg, Phys. Rev., 71, 508 (1947).ADSCrossRefGoogle Scholar
  27. 14.
    K. W. Ford and D. Bohm, Phys. Rev., 79, 745 (1950).ADSCrossRefGoogle Scholar
  28. 15.
    H. H. Barschall, C. K. Bockelman, and L. W. Seagondollar, Phys. Rev., 73, 659 (1948) (Fe, Ni, Bi) ;ADSCrossRefGoogle Scholar
  29. R. K. Adair, H. H. Barschall, C. K. Bockelman, and O. Sala, ibid., 75, 1124 (1949) (Be, O, Na, Ca) ;ADSGoogle Scholar
  30. C. K. Bockelman, R. E. Peterson, R. K. Adair, and H. H. Barschall, ibid., 76, 277 (1949)ADSGoogle Scholar
  31. R. E. Peterson, R. K. Adair, and H. H. Barschall, ibid., 79 (1950) ( lead isotopes);Google Scholar
  32. C. K. Bockelman, D. W. Miller, R. K. Adair, and H. H. Barschall, ibid., 84, 69 ( 1951 ) (Li, Be, B, C, 0);ADSGoogle Scholar
  33. H. H. Barschall, ibid., 86, 431L (1952) ( review) ;ADSGoogle Scholar
  34. D. W. Miller, R. K. Adair, C. K. Bockelman, and S. E. Darden, ibid., 88, 83 ( 1952 ) ( review);ADSGoogle Scholar
  35. N. Nereson and S. Darden, ibid., 89, 775 (1953) (higher energies);ADSGoogle Scholar
  36. M. Walt, R. L. Becker, A. Okazaki, R. E. Fields, ibid., 89, 1271 (1953);ADSGoogle Scholar
  37. A. Okasaki, S. E. Darden, R. B. Walton, ibid., 93, 461 (1954) (Nd, Sm, Er, Yb, Hf)ADSGoogle Scholar
  38. M. Walt and H. H. Barschall, ibid., 93, 1062 (1954);ADSGoogle Scholar
  39. R. K. Adair, Rev. Mod. Phys., 22, 249 (1950);ADSCrossRefGoogle Scholar
  40. A. Langsdorf, Phys. Rev., 80, 132 (1950).Google Scholar
  41. 16.
    H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev., 90, 166 (1953);ADSCrossRefGoogle Scholar
  42. H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev., 96, 448 (1954).ADSMATHCrossRefGoogle Scholar
  43. 17.
    J. M. C. Scott, Phil. Mag., 45, 1332 (1954);Google Scholar
  44. E. P. aligner, Science, 120, 790 (1954);Google Scholar
  45. A. M. Lane, R. C. Thomas, and E. P. Wigner, Phys. Rev., 98, 693 (1955).ADSCrossRefGoogle Scholar
  46. 18.
    G. Breit and E. P. Wigner, Phys. Rev., 49, 519, 642 (1936).ADSMATHCrossRefGoogle Scholar
  47. 19.
    P. L. Kapur and R. Peierls, Proc. Roy. Soc. (London), A166, 277 (1938)ADSGoogle Scholar
  48. 20.
    L. Eisenbud and E. P. Wigner, Phys. Rev., 72, 29 (1947);ADSCrossRefGoogle Scholar
  49. T. Teichmann and E. P. Wigner, ibid., 87, 123 (1952).ADSMATHGoogle Scholar
  50. 21.
    R. G. Thomas, Phys. Rev., 100, 25 (1955).ADSMATHCrossRefGoogle Scholar
  51. 22.
    J. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (New York: John Wiley and Sons, 1952), Chapters VIII and X;MATHGoogle Scholar
  52. R. G. Sachs, Nuclear Theory (Cambridge: Addison-Wesley Publishing Co., 1953), pp. 290–304. Google Scholar
  53. 23.
    L. Eisenbud and E. P. Wigner, Nuclear Structure ( Princeton, N.J.: Princeton University Press, 1958 ), Sec. 9.5.Google Scholar
  54. 25.
    W. Schutzer and J. Tiomno, Phys. Rev., 83, 249 (1951)MathSciNetADSCrossRefGoogle Scholar
  55. R. de L. Kronig, J. Opt. Soc. Am., 12, 547 (1926);Google Scholar
  56. H. A. Kramers, Atti. congr. intern. fisici Como 2, p. 545 (1927 ).Google Scholar
  57. 26.
    N. G. Van Kampen, Phys. Rev., 89, 1072 (1953);Google Scholar
  58. J. S. Toll, Princeton University Dissertation, 1952.Google Scholar
  59. 27.
    M. Gell-Mann, M. L. Goldberger, and W. E. Thirring, Phys. Rev., 95, 1612 (1954).MathSciNetADSMATHCrossRefGoogle Scholar
  60. 28.
    K. Loewner, Math. Z., 38, 177 (1953 ).CrossRefGoogle Scholar
  61. E. P. Wigner and J. V. Neumann, Ann. Math., 59, 418 (1954).MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • E. P. Wigner

There are no affiliations available

Personalised recommendations