Skip to main content

Experimental Studies of Organic Acid Decomposition

  • Chapter
Organic Acids in Geological Processes

Summary

This chapter presents a brief review of the decarboxylation and oxidation modes of spontaneous decomposition of carboxylic acids with the main emphasis on the reactions of acetic acid. The kinetics of thermal decarboxylation of short-chain carboxylic acids are characterized by means of an isokinetic relationship into two general mechanistic classes: aliphatic monocarboxylic acids, which react via a heterogeneously catalyzed mechanism, and dicarboxylic acids, which undergo homogeneous C-C bond cleavage. In this chapter, emphasis is placed on the former class of reactions. A detailed critical discussion of the experimental techniques used to derive the rate constants is given together with suggestions for future experiments that in the authors’ view would serve to test the preliminary mechanistic assignments. Attention will also be focused on the need and methods used to characterize the solid surface component of heterogeneous catalysis. Specific mention is made of experiments involving oxidatrion reactions that may help to rationalize the correlations proposed in the literature on the basis of field data, as well as clarifying the nature and reversibility of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams LJ, Franzus B, Huang TT-S (1978) On the decarboxylation of oxalic acid solutions. Int J Chem Kinet 10: 669–675.

    Google Scholar 

  • Adinarayana M, Sethuram B, Navaneeth Rao T (1975) Kinetics of Ag+ catalysed oxidative decarboxylation of some organic acids by Ce4+ in H2SO4 medium. Curr Sci 44: 581–583.

    Google Scholar 

  • Adinarayana M, Saiprakash PK, Sethuram B, Navaneeth Rao T (1976) Kinetics of Ag+ catalysed oxidative decarboxylation of acetic acid by Ce4+ in H2SO4 medium. J Indian Chem Soc LIII: 255–257.

    Google Scholar 

  • Ai M (1977) Activities for the decomposition of formic acid and the acid-base properties of metal oxide catalysts. J Catal 50: 291–300.

    Google Scholar 

  • Al-Owais AA, Ballantine JA, Purneil JH, Thomas JM (1986) Thermogravimetric study of the intercalation of acetic acid and of water by Al3+-exchanged montmorillonite. J Mol Catal 35: 201–212.

    Google Scholar 

  • Anderson JM, Kochi JK (1970a) Manganese(III) complexes in oxidative decarboxylation of acids. J Am Chem Soc 92: 2450–2460.

    Google Scholar 

  • Anderson JM, Kochi JK (1970b) Silver(I)-catalyzed oxidative decomposition of acids by peroxydisulfate. The role of silver(II). J Am Chem Soc 92: 1651–1659.

    Google Scholar 

  • Atkins PW (1982) Physical chemistry. Freeman, San Fransisco, 1095 pp.

    Google Scholar 

  • Avery NR, Toby BH, Anton AB, Weinberg WH (1982) Decomposition of formic acid on Ru(001): an EELS search for a formic anhydride intermediate. Surface Sci 122: L574–L578.

    Google Scholar 

  • Balandin AA (1969) Modern state of the multiplet theory of heterogeneous catalysis. Adv Catal Related Subjects 19: 1–210.

    Google Scholar 

  • Baldi G, Goto S, Chow C-K, Smith JM (1974) Catalytic oxidation of formic acid in water. Intraparticle diffusion in liquid-filled pores: Ind Eng Chem Process Design Dev 13: 447–452.

    Google Scholar 

  • Bamford CH, Dewar JS (1949) The thermal decomposition of acetic acid. J Chem Soc (B): 2877–2882.

    Google Scholar 

  • Banks BEC, Damjanovic V, Vernon CA (1972) The so-called thermodynamic compensation law and thermal death. Nature 240: 147–148.

    Google Scholar 

  • Barteau MA, Bowker M, Madix RJ (1980) Acid-base reactions on solid surfaces: the reactions of HCOOH, H2CO, and HCOOCH3 with oxygen on Ag(110). Surface Sci 94: 303–322.

    Google Scholar 

  • Barteau MA, Bowker M, Madix RJ (1981) Formation and decomposition of acetate intermediates on the Ag(110) surface. J Catal 67: 118–128.

    Google Scholar 

  • Barth T (1987) Quantitative determination of volatile carboxylic acids in formation waters by isotachophoresis. Anal Chem 59: 2232–2237.

    Google Scholar 

  • Bell JLS (1991) Acetate decomposition in hydrothermal solutions. PhD Thesis, The Pennsylvania State University, University Park, 228 pp.

    Google Scholar 

  • Bell JLS, Palmer DA, Barnes HL, Drummond SE (1993) Thermal decomposition of acetate. Part III. Catalysis by mineral surfaces. Geochim Cosmochim Acta (in press).

    Google Scholar 

  • Benziger JB, Madix RJ (1979) The decomposition of formic acid on Ni(100). Surface Sci 79: 394–412.

    Google Scholar 

  • Benziger JB, Madix RJ (1980) Reactions and reaction intermediates on iron surfaces. II. Hydrocarbons and carboxylic acids. J Catal 65: 49–58.

    Google Scholar 

  • Benziger JB, Schoofs GR (1984) Influence of absorbate interactions on heterogeneous reaction kinetics. Formic acid decomposition on nickel. J Phys Chem 88: 4439–4444.

    Google Scholar 

  • Benziger JB, Ko EI, Madix RJ (1979) The decomposition of formic acid on W(100) and W(100)-(5xl) C surfaces. J Catal 58: 149–153.

    Google Scholar 

  • Bingham FT, Sims JR, Page HL (1965) Retention of acetate by montmorillonite. Soil Soc Proc, pp 670-672.

    Google Scholar 

  • Blake PG, Jackson GE (1968) The thermal decomposition of acetic acid. J Chem Soc (B): 1153–1155.

    Google Scholar 

  • Blake PG, Jackson GE (1969) High-and low-temperature mechanisms in the thermal decomposition of acetic acid. J Chem Soc (B): 94–96.

    Google Scholar 

  • Boles JS, Crerar A, Grissom G, Key TC (1988) Aqueous thermal degradation of gallic acid. Geochim Cosmochim Acta 52: 341–344.

    Google Scholar 

  • Bond GC (1987) Heterogeneous catalysis. Principles and applications, 2nd edn. Oxford Chemistry Series, Oxford, 176 pp.

    Google Scholar 

  • Bos U, Herzog W, Leupold E-I (1980) Die Reaktionen von Acetaldehyd, Ethanol und Essigsäure an einem Rhodium/Kieselsäure-Katalysator. Ber Bunsen-Ges Phys Chem 84: 182–186.

    Google Scholar 

  • Boudart M, DjĂ©ga-Mariadassou G (1984) Kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton, 222 pp.

    Google Scholar 

  • Bowker M, Madix RJ (1981a) XPS, VPS, and thermal desorption studies of the reactions of formaldehyde and formic acid with the Cu(110) surface. Surface Sci 102:542–565.

    Google Scholar 

  • Bowker M, Madix RJ (1981b) The adsorption and oxidation of acetic acid and acetaldehyde on Cu(HO). Applications Surface Sci 8:299–317.

    Google Scholar 

  • Bowker M, Houghton H, Waugh KC (1983) The interaction of acetaldehyde and acetic acid with the ZnO surface. J Catal 79: 431–444.

    Google Scholar 

  • Brown MA (1951) The mechanism of thermal decarboxylation. Q Rev Chem Soc Lond 5: 131–146.

    Google Scholar 

  • Brown RA (1962) The linear enthalpy-entropy effect. J Org Chem 27: 3015–3026.

    Google Scholar 

  • Buckingham DA, Clark C (1982) Metal-hydroxide promoted hydrolysis of activated esters. Hydrolysis of 2,4-dinitrophenylacetate and 4-nitrophenylacetate. Aus J Chem 35: 431–436.

    Google Scholar 

  • Bunnett JF (1986) From kinetic data to reaction mechanism. In: Bernasconi CF (ed) Investigation of rates and mechanisms of reactions. Part 1. Techniques of chemistry, vol VI. Wiley, New York, pp 251–372.

    Google Scholar 

  • Carothers WW, Kharaka YK (1978) Aliphatic acid anions in oil-field waters — implications for origin of natural gas. Am Assoc Pet Geol Bull 62: 2441–2453.

    Google Scholar 

  • Child WC Jr, Hay AJ (1963) The thermodynamics of the thermal decomposition of acetic acid in the vapor phase. J Am Chem Soc 86: 182–187.

    Google Scholar 

  • Clark LW (1957) The kinetics of the decomposition of oxalic acid in non-aqueous solutions. J Phys Chem 61: 699–701.

    Google Scholar 

  • Clark LW (1958) The effect of quinoline and its derivatives on malonic acid. J Phys Chem 62: 500–502.

    Google Scholar 

  • Clark LW (1963) The decarboxylation of oxalic acid in cresols and glycols. J Phys Chem 67: 1355–1358.

    Google Scholar 

  • Clark LW (1969) The decarboxylation reaction. In: Patai S (ed) The chemistry of car-boxylic acids and esters. The chemistry of functional groups series. Wiley, New York, pp 589–622.

    Google Scholar 

  • Clavilier J, Sun SG (1986) Electrochemical study of the chemisorbed species formed from formic acid dissociation at platinum single crystal electrodes. J Electroanal Chem 199: 471–480.

    Google Scholar 

  • Conner WC (1982) A general explanation for the compensation effect: the relationship between Δ+ and activation energy. J Catal 78: 238–246.

    Google Scholar 

  • Crossey LJ (1991) Thermal degradation of aqueous Oxalate species. Geochim Cosmochim Acta 55: 1515–1527.

    Google Scholar 

  • Davies G (1989) Correlation of activation parameters and the case for substitution controlled redcution of CoOHaq 2+ and Co(NH3)2OHaq 2+. Implications for electro-catalysis by aquocobalt(III) and other strongly oxidizing metal species. Inorg Chim Acta 60: 83–86.

    Google Scholar 

  • Demorest M, Mooberry D, Danforth JD (1951) Decomposition of ketones and fatty acids by silica-alumina composites. Ind Eng Chem 43: 2560–2572.

    Google Scholar 

  • Dewar MJ, Krull KL (1990) Acidity of carboxylic acids: due to delocalization or induction? J Chem Soc Chem Commun: 333-334.

    Google Scholar 

  • Dinglinger A, Schroer E (1937) The kinetics of the thermal decomposition of oxalic acid in solution. Z Phys Chem A 179: 401–426.

    Google Scholar 

  • Dinglinger A, Schroer E (1938) Supplement to the investigation of the thermal decomposition of oxalic acid in solution: decomposition in aqueous solutions at 99.4°. Z Phys Chem A 181: 375–378.

    Google Scholar 

  • Drummond SE, Palmer DA (1986) Thermal decarboxylation of acetic acid. Part II. Boundary conditions for the role of acetate in the primary migration of natural gas and the transportation of metals in hydrothermal systems. Geochim Cosmochim Acta 50: 825–833.

    Google Scholar 

  • Eisma E, Jurg JW (1969) Fundamental aspects of the generation of petroleum. In: Egington G, Murphy MTJ (eds) Organic chemistry. Methods and results. Springer, Berlin Heidelberg New York, pp 676–698.

    Google Scholar 

  • Exner O (1964a) Concerning the isokinetic relationship. Nature 201: 488–490.

    Google Scholar 

  • Exner O (1964b) On the enthalpy-entropy relationship. Collect Czech Chem Commun 29: 1094–1113.

    Google Scholar 

  • Exner O (1970) Determination of the isokinetic temperature. Nature 227: 366–367.

    Google Scholar 

  • Exner O (1972) Statistics of the enthalpy-entropy relationship. I. The special case. Collect Czech Chem Commun 37: 1425–1444.

    Google Scholar 

  • Exner O, Beránek V (1973) Statistics of the enthalpy-entropy relationship. II. The general case. Collect Czech Chem Commun 38: 781–798.

    Google Scholar 

  • Fairclough R A (1938) Kinetics of decarboxylation of certain organic acids. J Chem Soc: 1186-1190.

    Google Scholar 

  • Falconer JL, Madix RJ (1974) The kinetics and mechanism of the autocatalytic decomposition of HCOOH on clean Ni(110). Surface Sci 46: 473–504.

    Google Scholar 

  • Finkbeiner HL, Stiles M (1963) Chelation as a driving force in organic reactions. α-Nitro acids by control of the carboxylation-decarboxylation equilibrium. J Am Chem Soc 85: 616–622.

    Google Scholar 

  • Fisher JB (1987) Distribution and occurrence of aliphatic acid anions in deep subsurface water. Geochim Cosmochim Acta 51: 2459–2468.

    Google Scholar 

  • Fisher JB, Boles JR (1990) Water-rock interaction in Tertiary sandstones, San Joaquin Basin, California, USA: diagenetic controls on water composition. Chem Geol 82: 83–101.

    Google Scholar 

  • Fraenkel G, Belford RL, Yankwich PE (1954) Decarboxylation of malonic acid in quino-line and related media. J Am Chem Soc 76: 15–18.

    Google Scholar 

  • Galwey AK (1977) Compensation effect in heterogeneous catalysis. Adv Catal 26: 247–322.

    Google Scholar 

  • Galwey AK, Brown ME (1979) Compensation parameters in heterogeneous catalysis. J Catal 60: 335–338.

    Google Scholar 

  • Gardiner WC Jr (1969) Rates and mechanisms of chemical reactions. Benjamin/ Cummings, Menlo Park, 284 pp.

    Google Scholar 

  • Gelles E (1956) Kinetics of the decarboxylation of oxalacetic acid. J Chem Soc: 4736-4739.

    Google Scholar 

  • Gilbert R, Lamarre C, Dunbar Y, MacNeil CK, Eatock JW (1990) Identification and distribution of the morpholine breakdown products in different steam-condensate cycles of CANDU-PHW nuclear power plants. In: Riddle JM, Passell T (eds) Workshop on use of amines in conditoning steam water circuits. Electric Power Research Institute, Tampa, FL, pp 19-1-19-25.

    Google Scholar 

  • Giordano TH, Drummond SE (1991) The Potentiometric determination of stability constants for zinc acetate complexes in aqueous solutions to 295 °C. Geochim Cosmochim Acta 55: 2401–2415.

    Google Scholar 

  • Goddard JD, Yamaguchi Y, Schaefer HF III (1992) The decarboxylation and dehydration reactions of monomeric formic acid. J Chem Phys 96: 1158–1166.

    Google Scholar 

  • Gonzalez F, Munuera G, Prieto JA (1978) Mechanism of ketonization of acetic acid on anatase TiO2 surfaces. J Chem Soc Faraday Trans 74: 1517–1529.

    Google Scholar 

  • Gould ES (1959) Mechanism and structure in organic chemistry. Holt, New York, pp 346–353.

    Google Scholar 

  • Hall GA (1949) The kinetics of the decomposition of malonic acid in aqueous solution. J Am Chem Soc 71: 2691–2693.

    Google Scholar 

  • Hanor JS (1987) Origin and migration of subsurface, sedimentary brines. Soc Econ Paleontol Mineral Short Course Notes 21, 247 pp.

    Google Scholar 

  • Hanor JS, Workman AL (1986) Dissolved fatty acids in Louisiana oil-field brines. Appl Geochem 1: 37–46.

    Google Scholar 

  • Hayden BE, Prince K, Woodruff DP, Bradshaw AM (1983) An IRAS study of formic acid and surface formate adsorbed on Cu(110). Surface Sci 133: 589–604.

    Google Scholar 

  • Hubbard AT (1989) Structure of the solid-liquid interface. In: Compton R G (ed) Comprehensive chemical kinetics, reactions at the liquid-solid interface, vol 41. Elsevier, New York, 286 pp.

    Google Scholar 

  • Hurd CD, Martin KE (1929) Ketene from acetic acid. J Am Chem Soc 51: 3614–3617

    Google Scholar 

  • Imamura S-I, Hirano A, Kawabata N (1982a) Wet oxidation of acetic acid catalyzed by Co-Bi complex oxides. Ind Eng Chem Product Res Dev 21: 570–575.

    Google Scholar 

  • Imamura S, Matsushige H, Kawaabata N, Inui T, Takegami Y (1982b) Oxidation of acetic acid on Co-Bi composite oxide catalysts. J Catal 78: 217–224.

    Google Scholar 

  • Jurg JW, Eisma E (1964) Petroleum hydrocarbons: generation from fatty acid. Science 144: 1451–1452.

    Google Scholar 

  • Kawamura K, Kaplan IR (1987) Dicarboxylic acids generated by thermal alteration of kerogen and humic acids. Geochim Cosmochim Acta 51: 3201–3207.

    Google Scholar 

  • Kawamura K, Tannenbaum E, Huizinga BJ, Kaplan IR (1986) Volatile organic acids generated from kerogen during laboratory heating. Geochem J 20: 3201–3207.

    Google Scholar 

  • Kettler RM, Palmer DA, Wesolowski DJ (1991) Dissociation quotients of oxalic acid in aqueous sodium chloride media to 175°C. J Solution Chem 20: 905–927.

    Google Scholar 

  • Kettler RM, Wesolowski DJ, Palmer DA (1992) Dissociation quotients of malonic acid in aqueous sodium chloride media to 100°C. J Solution Chem 21: 883–900.

    Google Scholar 

  • Kharaka YK, Carothers WW, Rosenbauer RJ (1983) Thermal decarboxylation of acetic acid: implications for origin of natural gas. Geochim Cosmochim Acta 47: 397–402.

    Google Scholar 

  • Kharaka YK, Maest AS, Carothers WW, Law LM, Lamothe PJ, Fries TL (1987) Geochemistry of metal-rich brines from central Mississippi salt dome basin, USA. Appl Geochem 2: 543–561.

    Google Scholar 

  • Kim KS, Barteau MA (1988) Pathways for carboxylic acid decompositions on TiO2. Langmuir 4: 945–953.

    Google Scholar 

  • King JA (1947) A new synthesis of dl-serine. J Am Chem Soc 69: 2738–2741.

    Google Scholar 

  • Kochi JK (1965a) The mechanism of oxidative decarboxylation with lead(IV) acetate. J Am Chem Soc 87: 1811–1812.

    Google Scholar 

  • Kochi JK (1965b) Formation of alkyl halides from acids by decarboxylation with lead(IV) acetate and halide salts. J Org Chem 22A: 3265–3271.

    Google Scholar 

  • Kosicki GW, Kipovac SN (1964) The pH and pD dependence of the spontaneous and magnesium-ion-catalyzed decarboxylation of oxalacetic acid. Can J Chem 42: 403–415.

    Google Scholar 

  • Kraeutler B, Bard AJ (1978) Heterogeneous photocatalytic decomposition of saturated carboxylic acids on TiO2 powder. Decarboxylative route to alkanes. J Am Chem Soc 100: 5985–5992.

    Google Scholar 

  • Kreevoy MM, Truhlar DG (1986) Transition state theory. In: Bernasconi CF (ed) Investigation of rates and mechanisms of reactions, Part 1. Techniques of chemistry, vol VI. Wiley, New York, pp 13–96.

    Google Scholar 

  • Krug RR (1980) Detection of the compensation effect (0 rule). Ind Eng Chem Fundamentals 19: 50–59.

    Google Scholar 

  • Kuriacose JC, Jewur SS (1977) Studies on the surface interaction of acetic acid on iron oxide. J Catal 50: 330–341.

    Google Scholar 

  • Kuriacose JC, Swaminathan R (1969) Studies on the ketonization of acetic acid on chromia. I. The adsorbate-catalyst interaction. J Catal 14: 348–354.

    Google Scholar 

  • Laidler KJ, King MC (1983) The development of transition state theory. J Phys Chem 87: 2657–2664.

    Google Scholar 

  • Lapidus G, Barton D, Yankwich PE (1964) Kinetics and stoichiometry of the gas-phase decomposition of oxalic acid. J Phys Chem 68: 1863–1865.

    Google Scholar 

  • Lapidus G, Barton D, Yankwich PE (1966a) Reversing hydrogen isotope effect on the rate of the gas phase decomposition of oxalic acid. J Phys Chem 70: 407–411.

    Google Scholar 

  • Lapidus G, Barton D, Yankovich PE (1966b) Reversing the intramolecular kinetic carbon isotope effect in the gas phase decomposition of oxalic acid. J Phys Chem 70: 3155–3159.

    Google Scholar 

  • Leffler JE (1955) The enthalpy-entropy relationship and its implications for organic chemistry. J Org Chem 20: 1202–1231.

    Google Scholar 

  • Leffler JE (1965) Concerning the isokinetic relationship. Nature 205: 1101–1102.

    Google Scholar 

  • Leffler JE (1966) The interpretation of enthalpy and entropy data. J Org Chem 31: 533–537.

    Google Scholar 

  • Leffler JE, Grunwald E (1963) Rates and equilibria of organic reactions. Wiley, New York, 458 pp.

    Google Scholar 

  • Levec J, Smith JM (1976) Oxidation of acetic acid solutions in a trickle-bed reactor. AIChE J 22: 159–168.

    Google Scholar 

  • Levee J, Herskowitz M, Smith JM (1976) An active catalyst for the oxidation of acetic acid solutions. AIChE J 22: 919–920.

    Google Scholar 

  • Lundegard PD, Senftle JT (1987) Hydrous pyrolysis; a tool for the study of organic acid synthesis. Appl Geochem 2: 605–612.

    Google Scholar 

  • Lutgert I, Schroer E (1940) The kinetics of the thermal decomposition oxalic acid in solution. Z Phys Chem A 187: 133–148.

    Google Scholar 

  • MacGowan DB, Surdam RC (1988) Difunctional carboxylic acid anions in oilfield waters. Org Geochem 12: 245–259.

    Google Scholar 

  • Madix RJ (1984) Reaction kinetics and mechanism: model studies on metal single crystals. Catal Rev Sci Eng 26: 281–297.

    Google Scholar 

  • Madix RJ, Falconer JL, Suszko AM (1976) The autocatalytic decomposition of acetic acid on Ni(110). Surface Sci 54: 6–20.

    Google Scholar 

  • Mars P, Scholten JJF, Zwietering P (1963) The catalytic decomposition of formic acid. Adv Catal 14: 35–113.

    Google Scholar 

  • Martens CS (1990) Generation of short-chain organic acid anions in hydrothermally altered sediments of the Guaymas Basin, Gulf of California. Appl Geochem 5: 71–76.

    Google Scholar 

  • Martens CS, Albert DB, Chanton JP, Pauly GG, Canuel EA (1988) Organic acids and light hydrocarbons in hydrothermally altered Guaymas Basin sediments. 1988 Annu Meet Geological Society of America, Abstr 21422, vol 20, p A296.

    Google Scholar 

  • Matusevich VM, Shvets VM (1973) Significance of organic acids of subsurface waters for oil-gas exploration in West Siberia. Geol Nefti i Gaza 10: 459–464.

    Google Scholar 

  • McCarty J, Falconer J, Madix RJ (1973) Decomposition of formic acid on Ni(110). I. Flash decomposition from the clean surface and flash desorption of reaction products. J Catal 30: 235–249.

    Google Scholar 

  • Means JL, Hubbard NJ (1985) The organic chemistry of deep ground waters from the Palo-Duro Basin, Texas: implications for radionuclide complexation, ground-water origin, and petroleum exploration. Tech Rep Batelle, BMI/ONWI-578 Distribution Category UC-70, 75 pp.

    Google Scholar 

  • Means JL, Hubbard N (1987) Short-chain aliphatic acid anions in deep subsurface brines: a review of their origin, occurrence, properties, and importance and new data on their distribution and geochemical implications in the Palo Duro Basin, Texas. Org Geochem 11: 177–191.

    Google Scholar 

  • Mehrotra RN (1981) Kinetics and mechanisms of redox reactions in aqueous solution, Part 7. Decarboxylation of aliphatic acids by aquasilver(II) ions. J Chem Soc Dalton Trans: 897-901.

    Google Scholar 

  • Miles SL, Bernasek SL, Gland JL (1983) The effects of substrate oxidation on the adsorption and decomposition of HCOOH on Mo(100). Surface Sci 127: 271–282.

    Google Scholar 

  • Millet M, Virely M, Forissier M, Bussiere P, Vedrine JC (1989) Mössbauer spectroscopic study of iron phosphate catalysts used in selective oxidation. Hyperfine Interact 46: 619–628.

    Google Scholar 

  • Minachev Kh M, Shpiro ES (1990) Catalytic surface: physical methods of studying. CRC Press, Boston, 375 pp.

    Google Scholar 

  • Mitchell JA, Reid EE (1931) The decomposition of acetic acid in the presence of silica gel. J Am Chem Soc 53: 338–342.

    Google Scholar 

  • Mittal L, Mittal JP, Hayon E (1973) Photo-induced decarboxylation of aliphatic acids and esters in solution. Dependence upon state of protonation of the carboxyl group. J Phys Chem 77: 1482–1487.

    Google Scholar 

  • Moore JW, Pearson RG (1981) Kinetics and mechanism. Wiley, New York, 455 pp.

    Google Scholar 

  • Mosher WA, Kehr CL (1953) The decomposition of organic acids in the presence of lead tetraacetate. J Am Chem Soc 75: 3172–3176.

    Google Scholar 

  • Muus J (1935) Carbon dioxide cleavage from dibromomalonic acid. J Phys Chem 39: 343–353.

    Google Scholar 

  • Nazar AFM, Wells CF (1985) Kinetics of the oxidation of substrate ligands by transition-metal cations. J Chem Soc Faraday Trans I, 81: 801–812.

    Google Scholar 

  • Nef JU (1901) Dissoziationsvorgänge bei den einatomigen Alkoholen, Aethern und Salzen. Justus Liebigs Ann Chem 318: 220–226.

    Google Scholar 

  • Palmer DA, Drummond SE (1986) Thermal decarboxylation of acetate. Part I. The kinetics and mechanism of reaction in aqueous solution. Geochim Cosmochim Acta 50: 813–823.

    Google Scholar 

  • Palmer DA, Drummond SE (1988) Potentiometric determination of the molai formation constants of ferrous acetate complexes in aqueous solutions to high temperatures. J Phys Chem 92: 6795–6800.

    Google Scholar 

  • Parrott SL, Rogers JW Jr, White JM (1978) The decomposition of ethanol, propanol and acetic acid chemisorbed on magnesium oxide. Application Surface Sci 1: 443–454.

    Google Scholar 

  • Pedersen KJ (1927) The velocity of the decomposition of nitroacetic acid in aqueous solution. Trans Faraday Soc 23: 316–326.

    Google Scholar 

  • Pedersen KJ (1932) The decomposition of a-nitrocarboxylic acids with some remarks on the decomposition of β-ketocarboxylic acids. J Phys Chem 38: 559–571.

    Google Scholar 

  • Pedersen Kj (1949) The effect of metal ions on the rate of decomposition of nitroacetic acid. Acta Chem Scand 3: 676–696.

    Google Scholar 

  • Petersen RC (1964) The linear relationship between enthalpy and entropy of activation. J Org Chem 29: 3133–3135.

    Google Scholar 

  • Pintar A, Levec J (1992) Catalytic oxidation of organics in aqueous solutions. I. Kinetics of phenol oxidation. J Catal 135: 345–357.

    Google Scholar 

  • Purnell JH, Al-Owais A, Ballantine JA (1987) Thermogravimetric analysis study of the adsorption of ethanoic acid vapor by ion-exchanged montmorillonite. In: Schulz LG, van Olphen H, Mumpton FA (eds) Proc Int Clay Conf, Denver, 1985, pp 335-339.

    Google Scholar 

  • Rajadurai S (1987) Synthesis, structural characterization, and catalytic study of ZnCrFeO4 spinel. Mater Chem Phys 15: 459–466.

    Google Scholar 

  • Richardson WH, O’Neal HE (1972) The unimolecular decomposition of oxygenated organic compounds (other than aldehydes and ketones). In: Bamford CH, Tipper CFH (eds) Comprehensive chemical kinetics, vol 5. Decomposition and isomerization of organic compounds. Elsevier, Amsterdam, pp 381–555.

    Google Scholar 

  • Rubinshtein AM, Yakerson VI, Lafer LI (1964) Catalytic ketonization of acetic acid over a mixed CaCO3-Li2CO3 catalyst. Kinet Catal 5: 319–323.

    Google Scholar 

  • Satterfield CN (1980) Heterogeneous catalysis in practice. McGraw-Hill, New York, 416 PP.

    Google Scholar 

  • Schoofs R, Benziger JB (1984) Decomposition of acetic acid monomer, acetic acid dimer, and acetic anhydride on Ni(111). Surface Sci 143: 359–368.

    Google Scholar 

  • Servotte Y, Jacobs J, Jacobs PA (1985) Selectivity in the conversion of acetic acid over the MFI-type zeolites. Acta Phys Chem 31: 609–618.

    Google Scholar 

  • Sexton BA (1979) Observation of formate species on a copper(100) surface by high resolution electron energy loss spectroscopy. Surface Sci 88: 319–330.

    Google Scholar 

  • Sexton BA, Madix RJ (1981) A vibrational study of formic acid interaction with clean and oxygen-covered silver(110) surfaces. Surface Sci 105: 177–195.

    Google Scholar 

  • Sheldon RA, Kochi JK (1968) Photochemical and thermal reduction of cerium(IV) carboxylates. Formation and oxidation of alkyl radicals. J Am Chem Soc 90: 6687–6698.

    Google Scholar 

  • Shock EL (1988) Organic acid metastability in sedimentary basins. Geology 16: 886–890.

    Google Scholar 

  • Shock EL (1989) Corrections to “Organic acid metastability in sedimentary basins”. Geology 17: 572–573.

    Google Scholar 

  • Shustorovich E, Bell AT (1989) An analysis of formic acid decomposition on metal surfaces by the bond-order-conservation-order-potential approach. Surface Sci 222: 371–382.

    Google Scholar 

  • Steinberger R, Westheimer FH (1951) Metal ion-catalyzed decarboxylation: a model for an enzyme system. J Am Chem Soc 73: 429–435.

    Google Scholar 

  • Stone AT (1986) Adsorption of organic reductants and subsequent electron transfer on metal oxide surfaces. In: Davis J A, Hayes K F (eds) Geochemical processes at mineral surfaces. American Chemical Society, Washington DC, pp 446–461.

    Google Scholar 

  • Surdam RC, Crossey LJ (1985) Mechanisms of organic/inorganic interactions in sandstone/shale sequences. Soc Econ Paleontol Mineral Short Course Notes 17: 177–232.

    Google Scholar 

  • Surdam RC, MacGowan DB (1987) Oilfield waters and sandstone diagenesis. Appl Geochem 2: 613–619.

    Google Scholar 

  • Surdam RC, Boese SW, Crossey LJ (1984) The chemistry of secondary porosity. In: McDonald DA, Surdam RC (eds) Clastic diagenesis. Am Assoc Pet Geol Mem 37, pp 127–149.

    Google Scholar 

  • Swaminathan R, Kuriacose JC (1970) Studies on the ketonization of acetic acid on chromia. II. The surface reaction. J Catal 16: 357–362.

    Google Scholar 

  • Tinker HB (1970) The decarboxylation of carboxylic acids during the autoxidation of cyclohexane. J Catal 19: 237–244.

    Google Scholar 

  • Trillo JM, Munuera G, Criado JM (1972) Catalytic decomposition of formic acid on metal oxides. Catal Rev 7: 51–86.

    Google Scholar 

  • Truhlar DG, Hase WL, Hynes JJ (1983) Current status of transition-state theory. J Phys Chem 87: 2664–2682.

    Google Scholar 

  • Tsai CS (1967) Spontaneous decarboxylation of oxalacetic acid. Can J Chem 45: 873–880.

    Google Scholar 

  • Virely C, Forissier M, Millet JM, Vdrine JC, Huchette D (1992) Kinetic study of isobutyric acid oxydehydrogenation on various Fe-P-O catalysts: proposal for the reaction mechanism. J Mol Catal 71: 119–213.

    Google Scholar 

  • Westheimer FH, Jones WA (1941) The effect of solvent on some reaction rates. J Am Chem Soc 63: 3283–3286.

    Google Scholar 

  • Wilkins R (1991) Kinetics of reactions of transition metal complexes. VCH, Weinheim, pp 87–89.

    Google Scholar 

  • Wold S (1972) The abnormal behaviour of enthalpy-entropy plots. Chem Scr 2: 145–147.

    Google Scholar 

  • Wold S, Exner O (1973) Statistics of the enthalpy-entropy relationship. Chem Scr 3: 5–11.

    Google Scholar 

  • Ying DHS, Madix RJ (1979) Thermal desorption study of the acetic acid decomposition on clean Ni/Cu(110) alloy surfaces. J Catal 60: 441–451.

    Google Scholar 

  • Zinger AS, Kravchik TE (1972) The simpler organic acids in ground water of the Lower Volga Region (genesis and possible use in prospecting for oil). Dokl Akad Nauk SSSR 202: 693–696.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bell, J.L.S., Palmer, D.A. (1994). Experimental Studies of Organic Acid Decomposition. In: Pittman, E.D., Lewan, M.D. (eds) Organic Acids in Geological Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78356-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78356-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78358-6

  • Online ISBN: 978-3-642-78356-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics