Skip to main content

Geochemical Models of Rock-Water Interactions in the Presence of Organic Acids

  • Chapter
Organic Acids in Geological Processes

Summary

Theoretical analysis of the role of organic acids (OA) and acid anions (OAA) in sedimentary environments is an effective way of evaluating the importance of inorganic-organic interactions in rock-water systems. Geo-chemical modeling provides insight into the role of these organic constituents in aqueous sedimentary environments by defining the boundary conditions under which such interactions may be significant. In many cases, carefully designed geochemical models allow conflicts to be resolved among differing experimental results and among various working hypotheses. The approach can be limited by lack of understanding of the processes being modeled, lack of testable working hypotheses, or lack of either experimental or field observations against which to calibrate model results. Interpretation of results from chemical models always needs to accommodate uncertainties in the supporting thermodynamic data.

Geochemical models of rock-water interactions in the presence of organic acids, using a combination of experimental and estimated thermodynamic data, result in several important predictions: first, trivalent cation-difunctio-nal acid anion complexes are the most stable, whereas monovalent cation-monofunctional acid anion complexes are the least stable. Second, the stability of all complexes is pH-dependent and, whereas aluminum oxalate dominates the species distribution of aluminum under acidic conditions, in alkaline waters, inorganic aluminum species are predominant. Calculations using reaction path models reveal additional constraints on the role of OAA in geologic processes. The roles that OA and OAA play in modifying mineral solubility equilibria depend, among others, on pH, acid composition, competing inorganic equilibria with CO2 and temperature. Considerations of simple system geochemistry thus cannot be readily used to predict the effect the OA/OAA may have in modifying rock-water interactions. Indeed, in some circumstances OAA-bearing waters are less effective at producing porosity in an arkosic sandstone than are OAA-free waters.

An overview of the role of OA in sedimentary processes is that they contribute to overall patterns of fluid-rock interaction, but appear unlikely to dominate such reactions except in restricted geochemical environments where concentrations are in excess of typical values. Such environments might include wetlands, gasoline-contaminated groundwaters, within organic-rich shales, and within sandstones immediately adjacent to such rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams SS, Curtis HS, Hafen PL, Salek-Nejad H (1978) Interpretation of postdepositional processes related to the formation and destruction of the Jackpile-Paguate uranium deposit, northwest New Mexico. Econ Geol 73: 1635–1654.

    Article  Google Scholar 

  • Antweiler RC, Drever JI (1983) The weathering of a Late Tertiary volcanic ash: the importance of organic solutes. Geochim Cosmochim Acta 47: 623–629.

    Article  Google Scholar 

  • Bassett RL, Melchior DC (1990) Chemical modeling of aqueous systems: an overview. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II. Am Chem Soc Symp Ser 416, Washington DC, pp 1-15.

    Google Scholar 

  • Bennett P (1991) Quartz dissolution in organic-rich solutions. Geochim Cosmochim Acta 55: 1781–1799.

    Article  Google Scholar 

  • Bennett PC, Siegel DI (1987) Increased solubility of quartz in water due to complexing by organic compounds. Nature 326: 684–686.

    Article  Google Scholar 

  • Bennett PC, Melcer ME, Siegel DI, Hassett JP (1988) The dissolution of quartz in dilute solutions of organic acids at 25°C. Geochim Cosmochim Acta 52: 1521–1530.

    Article  Google Scholar 

  • Bennett PC, Siegel DI, Hill BM, Glasser PH (1991) Fate of silicate minerals in a peat bog. Geology 19: 328–331.

    Article  Google Scholar 

  • Bevan J, Savage D (1989) The effect of organic acids on the dissolution of K-feldspar under conditions relevant to burial diagenesis. Mineral Mag 53: 415–425.

    Article  Google Scholar 

  • Bilinski H, Horvath L, Ingri N, Sjöberg S (1986) Equilibrium aluminium hydroxo-oxalate phases during initial clay formation; H+-Al+-oxalic acid-Na+ system. Geochim Cosmochim Acta 50: 1911–1922.

    Article  Google Scholar 

  • Bjørlykke K (1979) Cementation of sandstones. J Sediment Pet 49: 1358–1359.

    Google Scholar 

  • Bjørlykke K (1984) Formation of secondary porosity: how important is it? In: McDonald DA, Surdam RC (eds) Clastic diagenesis. Am Assoc Pet Geol Mem 37, pp 277–289.

    Google Scholar 

  • Blatt H (1979) Diagenetic processes in sandstones. In: Scholle PA, Schluger PR (eds) Aspects of diagenesis. Soc Econ Paleontol Mineral Spec Publ 26, pp 141–157.

    Google Scholar 

  • Boles JR (1987) Six million year diagenetic history, North Coles Levee, San Joaquin Basin, California. In: Marshall J D (ed) Diagenesis of sedimentary sequences. Geol Soc Spec Publ 36: 191–200.

    Google Scholar 

  • Bruton CJ (1986) Predicting mineral dissolution and precipitation during burial: synthetic diagenetic sequences. In: Proc Worksh Geochemical modeling. Lawrence Livermore National Laboratory Publ CONF-8609134, Livermore, CA, pp 111-120.

    Google Scholar 

  • Caminiti P, Cucca P, Monduzzi M, Suba G (1984) Divalent metal acetate complexes in concentrated aqueous solutions: an X-ray diffraction and NMR spectroscopy study. J Chem Phys 81: 543–551.

    Article  Google Scholar 

  • Campbell TJ, Roberts WL (1986) Whewellite from South Dakota and a review of other North American localities. Mineral Ree 17: 131–133.

    Google Scholar 

  • Carothers WW, Kharaka YK (1978) Aliphatic acid anions in oil-field waters — implications for origin of natural gas. Am Assoc Pet Geol Bull 62: 2441–2453.

    Google Scholar 

  • Chen W, Ghaith A, Park A, Ortoleva PJ (1990) Diagenesis through coupled processes: modeling approach, self-organization, and implications for exploration. In: Meshri I (ed) Prediction of reservoir quality through chemical modeling. Am Assoc Pet Geol Mem 49, pp 103–131.

    Google Scholar 

  • Cleveland JM (1979) Critical review of plutonium equilibria of environmental concern. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II. Am Chem Soc Symp Ser 416, Washington DC, pp 321-338.

    Google Scholar 

  • Crossey LJ (1991) Thermal degradation of aqueous Oxalate species. Geochim Cosmochim Acta 55: 1515–1529.

    Article  Google Scholar 

  • Crossey LJ, Frost BR, Surdam RC (1984) Secondary porosity in laumontite-bearing sandstones. In: McDonald D A, Surdam R C (eds) Clastic diagenesis. Am Assoc Pet Geol Mem 37, pp 225-239.

    Google Scholar 

  • Drever JI (1988) The geochemistry of natural waters, 2nd edn. Prentice-Hall, Englewood Cliffs, 437 pp.

    Google Scholar 

  • Drez PE, Harrison WJ (1985) Do organic acids play a role in diagenesis? In: Am Assoc Pet Geol Res Conf, Prediction of reservoir quality through chemical modeling, Park City, Utah (Abstr). Am Assoc Pet Geol, Tulsa, OK.

    Google Scholar 

  • Drummond SE, Palmer DA (1986a) Thermal decarboxylation of acetate. Part 1. The kinetics and mechanism of reaction in aqueous solution. Geochim Cosmochim Acta Actea 50: 813–823.

    Article  Google Scholar 

  • Drummond SE, Palmer DA (1986b) Thermal decarboxylation of acetate. Part 2. Boundary conditions for the role of acetate in the primary migration of natural gas and the transportation of metals in hydrothermal systems. Geochim Cosmochim Acta 50: 825–833.

    Article  Google Scholar 

  • Evans LJ (1988) Some aspects of the chemistry of aluminum in podzolic soils. Commun Soil Sci Plant Anal 19: 793–803.

    Article  Google Scholar 

  • Fein JB (1991a) Experimental study of aluminum-, calcium-and magnesium-acetate complexing at 80 °C. Geochim Cosmochim Acta 55: 955–964.

    Article  Google Scholar 

  • Fein JB (1991b) Experimental study of aluminum-oxalate complexing at 80 °C implications for the formation of secondary porosity within sedimentary reservoirs. Geology 1037-1040.

    Google Scholar 

  • Fisher JB (1987) Distribution and occurrence of aliphatic acid anions in deep subsurface waters. Geochim Cosmochim Acta 51: 2459–2468.

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, 604 pp.

    Google Scholar 

  • Galimov EM, Tugarinov AI, Nikitin AA (1975) On the origin of whewellite in a hydro-thermal uranium deposit. Geochem Int 1975: 31–37 (Translation from Geokhimiya 676-683).

    Google Scholar 

  • Garrels RM, Thompson ME (1962) A chemical model for sea water at 25 °C and one atmosphere total pressure. Am J Sci 260: 57–66.

    Article  Google Scholar 

  • Gautier DL (ed) (1986) Roles of organic matter in sediment diagenesis. Soc Econ Paleontol Mineral Spec Publ 38, 204 pp

    Google Scholar 

  • Giles MR, Marshall JD (1986) Constraints on the development of secondary porosity in the subsurface: re-evaluation of processes. Mar Pet Geol 3: 243–256.

    Article  Google Scholar 

  • Giodarno TH (1985) A preliminary evaluation of organic ligands and metal organic complexing in Mississippi Valley-type ore solutions. Econ Geol 80: 96–106.

    Article  Google Scholar 

  • Giordano TH (1989) Anglesite (PbSO4) solubility in acetate solutions: the determination of stability constants for lead acetate complexes to 85 °C. Geochim Cosmochim Acta 53: 359–366.

    Article  Google Scholar 

  • Giordano TH, Barnes HL (1981) Lead transport in Mississippi Valley-type ore solutions. Econ Geol 76: 2200–2211.

    Article  Google Scholar 

  • Giordano TH, Drummond SE (1987) Zinc acetate complexing in hydrothermal solutions. Geol Soc Am Abstr Program 19: 677.

    Google Scholar 

  • Giordano TH, Drummond SE (1991) The Potentiometric determination of stability constants for zinc acetate complexes in aqueous solutions to 295 °C. Geochim Cosmochim Acta 55: 2410–2417.

    Google Scholar 

  • Graustein WC, Cromack J Jr, Sollins P (1977) Calcium Oxalate: occurrence in soils and effect on nutrient and geochemical cycles. Science 198: 1252–1254.

    Article  Google Scholar 

  • Hajash A, Mahoney AJ, Elias BP (1989) Role of carboxylic acids in the dissolution of silicate sands: an experimental study at 100°C and 345 bars. Geol Soc Am Annu Meet St. Louis, Abstr Program 21: A49.

    Google Scholar 

  • Harrison WJ (1990) Modeling fluid/rock interactions in sedimentary basins. In: Cross TA (ed) Quantitative dynamic stratigraphy. Prentice-Hall, Englewood Cliffs, pp 195–231.

    Google Scholar 

  • Harrison WJ, Summa LL (1991) Paleohydrology of the Gulf of Mexico basin. Am J Sci 291: 109–176.

    Article  Google Scholar 

  • Harrison WJ, Tempel RN (1993) Diagenetic pathways in sedimentary basins. In: Robinson A, Horbury A (eds) paleohydrology and diagenesis in sedimentary basins. Am Assoc Pet Geol Stud Geol 36: 69–86.

    Google Scholar 

  • Harrison WJ, Thyne GD (1992) Predictions of diagenesis in the presence of organic acids. Geochim Cosmochim Acta 56: 565–586.

    Article  Google Scholar 

  • Helgeson HC (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci 267: 729–804.

    Article  Google Scholar 

  • Helgeson HG (1970) Calculation of mass transfer in geochemical processes involving aqueous solutions. Geochim Cosmochim Acta 34: 569–592.

    Article  Google Scholar 

  • Helgeson HG, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of the rock-forming minerals. Am J Sci 278A: 1–229.

    Google Scholar 

  • Helgeson HG, Murphy WM, Aargaard P (1984) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions II. Rate constants, effective surface area and the hydrolysis of feldspar. Geochim Cosmochim Acta 48: 2405–2433.

    Article  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. US Geol Surv Water Supply Pap 2254, 263 pp.

    Google Scholar 

  • Hennett RJ-C, Crerar DA, Schwartz J (1988) Organic complexes in hydrothermal systems. Econ Geol 83: 742–764.

    Article  Google Scholar 

  • Holm TR, Curtiss CD III (1990) Copper complexation by natural organic matter in groundwater. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II. Am Chem Soc Symp Ser 416, Washington DC, pp 508-518.

    Google Scholar 

  • Holm TR, Anderson MA, Iverson DG, Stanforth RS (1979) Heterogeneous interactions of arsenic in aquatic systems. In: Jenne EA (ed) Chemical modeling of aqueous systems I. Am Chem Soc Symp Ser 93, Washington DC, pp 711-736.

    Google Scholar 

  • Huang WH, Keller WD (1970) Dissolution of rock-forming silicates in organic acids: simulated first stage weathering of fresh mineral surfaces. Am Mineral 55: 2076–2094.

    Google Scholar 

  • Jenne EA (1979) Chemical modeling-goals, problems, approaches and priorities. In: Jenne EA (ed) Chemical modeling of aqueous systems I. Am Chem Soc Symp Ser 93, Washington DC, pp 3-24.

    Google Scholar 

  • Johnson JW, Lundeen SR, Chamberlain SC, Thermodynamic databases for the EQ3/ 6.3245.1090 Software Package: UCRL-XXXXX, Lawrence Livermore National Laboratory, Livermore, CA (in press).

    Google Scholar 

  • Kharaka YK, Carothers WW, Rosenbauer RJ (1983) Thermal decarboxyaltion of acetic acid: implications for origin of natural gas. Geochim Cosmochim Acta 47: 397–402.

    Article  Google Scholar 

  • Kharaka YK, Law LM, Carothers WW, Goelitz DF (1986) Role of organic species in formation waters from sedimentary basins in mineral diagenesis. In: Gautier D L (ed) Roles of organic matter in sediment diagenesis. Soc Econ Paleontol Mineral Spec Publ 38, pp 111–123.

    Article  Google Scholar 

  • Kharaka YK, Gunter WD, Aggerwaal PK, Perkins EH, DeBraal JD (1988) SOLMINEQ.88: a computer model for geochemical modeling of rock-water interactions. US Geol Surv Water Resources Investigations Rep 88-4227, 200 pp.

    Google Scholar 

  • Land LS (1984) Diagenesis of Frio Sandstones, Texas Gulf Coast: a regional isotopic study. In: McDonald DA, Surdam RC (eds) Clastic diagenesis. Am Assoc Pet Geol Mem 37, pp 37–62.

    Google Scholar 

  • Land LS, Milliken KL, McBride EF (1987) Diagenetic evolution of Cenozoic sandstones, Gulf of Mexico Sedimentary Basin. Sediment Geol 50: 195–225.

    Article  Google Scholar 

  • Langmuir D (1979) Techniques for estimating thermodynamic properties of some aqueous complexes of geochemical interest. In: Jenne EA (ed) Chemical modeling of aqueous systems I. Am Chem Soc Symp Ser 93, Washington DC, pp 353-387.

    Google Scholar 

  • Lind CJ, Hem JD (1975) Effects of organic solute on chemical reactions of aluminum. US Geol Surv Water Supply Pap 1827-G, pp G1-G83.

    Google Scholar 

  • Lovgren L (1991) Complexation reactions of phthalic acid and aluminum (III) with the surface of goethite. Geochim Cosmochim Acta 55: 3639–3646.

    Article  Google Scholar 

  • Lundegard PD, Kharaka YK (1990) Geochemistry of organic acids in subsurface waters: field data, experimental data and models. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II. Am Chem Soc Symp Ser 416, Washington DC, pp 169-189.

    Google Scholar 

  • Lundegard PD, Land LS (1989) Carbonate equilibria and pH buffering by organic acids-response to changes in PCO2. Chem Geol 74: 277–287.

    Article  Google Scholar 

  • MacGowan DB, Surdam RC (1988) Difunctional carboxylic acid anion in oil-field waters. Org Geochem 12: 245–259.

    Article  Google Scholar 

  • Manning DAC, Rae EIC, Small JS (1991) An exploratory study of acetate decomposition and dissolution of quartz and Pb-rich potassium feldspar at 150°C, 50mPa (500 bars). Mineral Mag 55: 183–195.

    Article  Google Scholar 

  • Marley NA, Bennett P, Janecky DR, Gaffney JS (1989) Spectroscopic evidence for organic diacid complexation with dissolved silica in aqueous systems. I. Oxalic acid. Org Geochem 14: 525–528.

    Article  Google Scholar 

  • Marlowe JI (1970) Weidellite in bottom sediment from the St. Lawrence and Saguenay Rivers. J Sediment Pet 40: 499–506.

    Google Scholar 

  • Martell AE, Smith RM (1977) Critical stability constants, vol 3. Other organic ligands. Plenum Press, New York, 495 pp.

    Google Scholar 

  • McDonald DA, Surdam RC (eds) (1984) Clastic diagenesis. Am Assoc Pet Geol Mem 37, 434 pp

    Google Scholar 

  • Meshri ID (1986) On the reactivity of carbonic and organic acids and generation of secondary porosity. In: Gautier DL (ed) Roles of organic matter in sediment diagenesis. Soc Econ Paleontol Mineral Spec Publ 38, pp 123–129.

    Article  Google Scholar 

  • Meshri ID, Walker JM (1990) A study of rock-water interaction and simulation of diagenesis in the Upper Almond Sandstones of the Red Desert and Washakie Basins, Wyoming. In: Meshri ID, Ortoleva PJ (eds) Prediction of reservoir quality through chemical modeling. Am Assoc Pet Geol Mem 49, pp 55-70.

    Google Scholar 

  • Moore CH, Ortoleva PJ (1990) Effects of fluid and rock compositions on diagenesis: a modeling approach. In: Meshri ID, Ortoleva PJ (eds) Prediction of reservoir quality through chemical modeling. Am Assoc Pet Geol Mem 49, pp 131–146.

    Google Scholar 

  • Nagy KL, Steefel CI, Blum AE, Lasaga AC (1990) Dissolution and precipiation kinetics of kaolinite: initial results at 80 °C with application to porosity evolution in a sandstone. In: Meshri ID, Ortoleva PJ (eds) Prediction of reservoir quality through chemical modeling. Am Assoc Pet Geol Mem 49, pp 85–102.

    Google Scholar 

  • Naumov GB, Nikitin AA, Naumov VB (1971) The origin of hydrothermal whewellite from fluorite veins in Transbaykalia. Geochem Int 1971: 107–112 (Translated from Geokhimiya 2: 180-186).

    Google Scholar 

  • Nordstrom DK, Plummer LN, Wigley TML, Wolery TJ et al. (1979) A comparison of computerized chemical models for equilibrium calculations in aqueous systems. In: Jenne EA (ed) Chemical modeling of aqueous systems I. Am Chem Soc Symp Ser 93, Washington DC, pp 857-892.

    Google Scholar 

  • Nordstrom DK, Plummer LN, Langmuir D, Busenburg E, May HM, Jones BF, Parkhurst DL (1990) Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II. Am Chem Soc Symp Ser 416, Washington DC, pp 398-413.

    Google Scholar 

  • Palmer DA, Drummond SE (1988) Potentiometric determination of the molai formation constants of ferrous acetate complexes in aqueous solutions to high temperatures. J Phys Chem 92: 6795–6800.

    Article  Google Scholar 

  • Parkhurst DL, Thorstenson DC, Plummer NL (1980) PHREEQE — a computer program for geochemical calculations. US Geol Surv Water Resources Investigation 80-96, 210 PP.

    Google Scholar 

  • Reed MH (1983) Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim Cosmochim Acta 46: 513–528.

    Article  Google Scholar 

  • Robie HA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol Surv Bull 1452, 456 pp.

    Google Scholar 

  • Rose NM, Jackson KJ (1989) Computation of coupled aqueous organic-inorganic equilibria in hydrothermal systems. Geol Soc Am Annu Meet St. Louis, Abstr Program 21: A49.

    Google Scholar 

  • Seewald JS, Seyfried WE Jr (1991) Experimental determination of portlandite solubility in H2O and acetate solutions at 100-350°C and 500 bars: constraints on calcium hydroxide and calcium acetate complex stability. Geochim Cosmochim Acta 55: 647–658.

    Article  Google Scholar 

  • Shock EL (1988) Organic acid metastability in sedimentary basins. Geology 16: 886–890.

    Article  Google Scholar 

  • Shock EL (1990) Do amino acids equilibrate in hydrothermal fluids? Geochim Cosmochim Acta 54: 1185.

    Article  Google Scholar 

  • Shock EL, Helgeson HC (1990) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molai properies of organic species. Geochim Cosmochim Acta 54: 915–945.

    Article  Google Scholar 

  • Stoessell RK, Pittman ED (1991) Secondary porosity revisited: the chemistry of feldspar dissolution by carboxylic acids and anions. Am Assoc Pet Geol Bull 74: 1795–1805.

    Google Scholar 

  • Sunda WG, Hanson PJ (1979) Chemical speciation of copper in river water: effect of total copper, pH, carbonate, and dissolved organic matter. In: Jenne EA (ed) Chemical modeling of aqueous systems I. Am Chem Soc Symp Ser 93, Washington DC, pp 147-180.

    Google Scholar 

  • Surdam RC, Boese SW, Crossey LJ (1984) The chemistry of secondary porosity in clastic diagenesis. In: McDonald D A, Surdam R C (eds) Clastic diagenesis. Am Assoc Pet Geol Mem 37, pp 127–150.

    Google Scholar 

  • Surdam RC, Crossey LJ, Hagan ES, Heasler HP (1989) Organic-inorganic interactions and sandstone diagenesis. Am Assoc Pet Geol Bull 73: 1–23.

    Google Scholar 

  • Thurman EM (1985) Organic Geochemistry of Natural Waters. Nijhoff Junk Dordrecht, 497 pp.

    Book  Google Scholar 

  • Thyne GD (1992) The early diagenesis of the Cardium Sandstone Alberta and calculations of the effect of organic acids on clastic diagenesis. PhD Thesis, University of Wyoming, Laramie, Wyoming, 186 pp.

    Google Scholar 

  • Thyne GD, Harrison WJ (1991) Stability of aluminum Oxalate aqueous complexes from 25-150°C. Annu Meet Geol Soc Am Boulder, CO, Abstr Program, vol 23, San Diego, p A212.

    Google Scholar 

  • Thyne GD, Harrison WJ, Alloway MD (1992) Experimental study of the stability of the Al-oxalate complexation at 100 °C and calculation of the effects of the complexation in clastic diagenesis. In: Kharaka YK, Maest AS (eds) Water rock interaction, vol 1. Proc 7th Int Symp Water rock interactions. Balkema, Rotterdam, pp 353–357.

    Google Scholar 

  • White AF, Peterson ML (1990) Role of reactive-surface area characterization in geo-chemical knietic models. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II. Am Chem Soc Symp Ser 416, Washington DC, pp 461-477.

    Google Scholar 

  • Wolery TJ (1979) Calculation of chemical equilibria between aqueous solutions and minerals: the EQ3/6 software package. Lawrence Livermore National Laboratory Rep. UCRL-52658, 41 pp.

    Google Scholar 

  • Wolery TJ (1983) EQ3NR. A computer program for geochemical aqueous speciation-solubility calculations: user’s guide and documentation. Lawrence Livermore National Laboratory Rep UCRL-53414, 189 pp.

    Google Scholar 

  • Wolery TJ, Daveler SA (1992) EQ6, a computer program for reaction path modeling of aqueous geochemical systems: theoretical manual, user’s guide, and related documentation (version 7.0), MCRL-MA-110662, Pt. IV. Lawrence Livermore National Laboratory, Livermore, CA, 255 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harrison, W.J., Thyne, G.D. (1994). Geochemical Models of Rock-Water Interactions in the Presence of Organic Acids. In: Pittman, E.D., Lewan, M.D. (eds) Organic Acids in Geological Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78356-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78356-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78358-6

  • Online ISBN: 978-3-642-78356-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics