Skip to main content

Introduction to the Role of Organic Acids in Geological Processes

  • Chapter
Organic Acids in Geological Processes

Summary

This chapter is intended to provide sufficient information to allow one to read the following chapters in any order they prefer. The objective and need for this book are presented in the introductory section. Nomenclature for organic acids is presented on an elementary level for nongeochemists. A historical account is then given on the role of organic acids in geological processes, which is followed by a brief synopsis of each chapter. The final section explores the needs for future research in terms of natural system studies and laboratory experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aiken GR, McKnight DM, Wershaw RL, McCarthy P (1985) Humic substances in soil, sediment and water. Wiley, New York, 692 pp.

    Google Scholar 

  • Antweiler RC, Drever JI (1983) The weathering of a late Tertiary ash: importance of organic solutes. Geochim Cosmochim Acta 47: 623–629.

    Article  Google Scholar 

  • Badry R, Head E, Morris C, Travoulay I (1993) New wireline formation tester techniques and applications. SPWLA Annu Symp, Calgary, Alberta, June 13-16, 1993, pp H1-H15.

    Google Scholar 

  • Barden RE, Logan ER, Branthaver JF, Neet KE (1984) The average molecular weight and shape of the “polymeric acids” found in black trona water from the Green River Basin. Org Geochem 5: 217–225.

    Article  Google Scholar 

  • Barth T (1987) Multivariate analysis of aqueous organic acid concentrations and geological properties of North Sea reservoirs. Chemometrics Intelligent Lab Syst 2: 155–160.

    Article  Google Scholar 

  • Barth T, Borgund AE, Hopland AL, Graue A (1988) Volatile organic acids produced during kerogen maturation — amounts, composition and role in migration of oil. Adv Org Geochem 13: 461–465.

    Article  Google Scholar 

  • Bennett PC (1991) Quartz dissolution in organic-rich aqueous systems. Geochim Cosmochim Acta 55: 1781–1797.

    Article  Google Scholar 

  • Bennett PC, Siegel DI (1987) Increased solubility of quartz in water due to complexing by organic compounds. Nature 326: 684–686.

    Article  Google Scholar 

  • Bennett PC, Melcer ME, Seigel DI, Hassett JP (1988) The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C. Geochim Cosmochim Acta 52: 1521–1530.

    Article  Google Scholar 

  • Bennett PC, Siegel DI, Hill BM, Glaser PH (1991) Fate of silicate minerals in a peat bog. Geology 19:328–331.

    Article  Google Scholar 

  • Bevan J, Savage D (1989) The effect of organic acids on the dissolution of K-feldspar under conditions relevant to burial diagenesis. Mineral Mag 53: 415–425.

    Article  Google Scholar 

  • Bjørlykke K (1984) Formation of secondary porosity: how important is it? In: McDonald DA, Surdam RC (eds) Clastic diagenesis. Am Assoc Pet Geol Mem 37: 277–286.

    Google Scholar 

  • Bourcier WL, Ulmer GC, Barnes HL (1987) Hydrothermal pH sensors of ZrO2, Pd hydrides, and Ir oxides. In: Ulmer CG, Barnes HL (eds) Hydrothermal experimental techniques. Wiley, New York, pp 157–188.

    Google Scholar 

  • Burley SD, Kantorowicz JD (1986) Thin section and S.E.M. textural criteria for the recognition of cement-dissolution porosity in sandstones. Sedimentology 33: 587–604.

    Article  Google Scholar 

  • Bykova EL, Nikitina JB (1964) Water-soluble organic matter of groundwater and surface water of south Yakutia. Geokhimiya 12: 1298–1304 (in Russian).

    Google Scholar 

  • Bykova EL, Melkanovitskaya SG, Shvets VM (1971) Distribution of organic acids in underground waters. Sov Geol 14: 135–142 (in Russian).

    Google Scholar 

  • Carlson HA (1949) Corrosion in natural gas-condensate wells — pH and carbon dioxide content of well waters at wellhead pressure. Ind Eng Chem 41: 644–645.

    Article  Google Scholar 

  • Carothers WW, Kharaka YK (1978) Aliphatic acid anions in oil-field waters — implications for origin of natural gas. Am Assoc Petrol Geol Bull 62: 2441–2453.

    Google Scholar 

  • Chesney RB (1953) Laboratory work on corrosion in carbon dioxide and organic acids. In: Prange FA, Edwards WHJ, Greco EC, Griffith TE, Grimshaw JA, Nathan CC, Shock DA (eds) Condensate well corrosion. Nat Gasoline Assoc Am, Tulsa, pp 157–163.

    Google Scholar 

  • Collins AG (1964) Eh and pH of oilfield waters. Prod Monthly 28: 11–12.

    Google Scholar 

  • Collins AG, Pearson DH, Attaway DH, Watkins JW (1961) Methods of analyzing oil field waters. US Bur Mines Rep Invest 5819: 11–17.

    Google Scholar 

  • Cronin JR, Pizzarello S, Cruikshank DP (1988) Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In: Kerridge JF, Matthews MS (eds) Meteorites and the early solar system. University of Arizona Press, Tucson, pp 819–857.

    Google Scholar 

  • Crossey LJ (1991) Thermal degradation of aqueous Oxalate species. Geochim Cosmochim Acta 56: 1515–1527.

    Article  Google Scholar 

  • Drummond SE, Palmer DA (1986) Thermal decarboxylation of acetate, part II. Boundary conditions for the role of acetate in the primary migration of natural gas and the transportation of metals in hydrothermal systems. Geochim Cosmochim Acta 50: 825–833.

    Article  Google Scholar 

  • Eglinton TI, Curtis CD, Rowland SJ (1987) Generation of water-soluble organic acids from kerogen during hydrous pyrolysis: implications for porosity development. Mineral Mag 51: 495–503.

    Article  Google Scholar 

  • Energy Information Administration (1991) US crude oil, natural gas, and natural gas liquids reserves, 1990 annual report. DOE/EIA-0216(90), Distribution Category UC-98, Washington DC, 109 pp.

    Google Scholar 

  • Fein JB (1991a) Experimental study of aluminum-, calcium-, and magnesium-acetate complexing at 80°C. Geochim Cosmochim Acta 55: 955–964.

    Article  Google Scholar 

  • Fein JB (1991b) Experimental study of aluminum-oxalate complexing at 80°C: implication for aluminum mobility in sedimentary basin fluids. Geology 19: 1037–1040.

    Article  Google Scholar 

  • Fisher JB (1987) Distribution and occurrence of aliphatic acid anions in deep subsurface waters. Geochim Cosmochim Acta 51: 2459–2468.

    Article  Google Scholar 

  • Fisher JB, Boles JR (1990) Water-rock interaction in Tertiary sandstones, San Joaquin Basin, California, USA: diagenetic controls on water composition. Chem Geol 82: 83–101.

    Article  Google Scholar 

  • Giles MR, de Boer RB (1989) Secondary porosity: creation of enhanced porosities in the subsurface from the dissolution of carbonate cements as a result of cooling formation waters. Mar Pet Geol 6: 261–269.

    Article  Google Scholar 

  • Giles MR, de Boer RB (1990) Origin and significance of redistributional secondary porosity. Mar Pet Geol 7: 378–397.

    Article  Google Scholar 

  • Giles MR, Marshall JD (1986) Constraints on the development of secondary porosity in the subsurface: re-evaluation of processes. Mar Pet Geol 3: 243–255.

    Article  Google Scholar 

  • Giordano TH (1985) A preliminary evaluation of organic ligands and metal organic complexing in Mississippi Valley-type ore solutions. Geochim Cosmochim Acta 80: 96–106.

    Google Scholar 

  • Giordano TH (1989) Anglesite (PbSO4) solubility in acetate solutions: the determination of stability constants for lead acetate complexes to 85 °C. Geochim Cosmochim Acta 53: 359–366.

    Article  Google Scholar 

  • Giordano TH, Barnes HL (1981) Lead transport in Mississippi Valley-type ore solutions. Econ Geol 76: 2200–2211.

    Article  Google Scholar 

  • Greco EC, Griffin HT (1946) Laboratory studies for determination of organic acids as related to internal corrosion of high pressure condensate wells. Corrosion 2: 138–152.

    Google Scholar 

  • Gullikson DM, Carraway WH, Gates BL (1961) Chemical analysis and electrical resistivity of selected California oil-field waters. US Bur Mines Rep Invest 5736: 1–21.

    Google Scholar 

  • Hajash A, Mahoney AJ, Elias BP (1989) Role of carboxylic acids in the dissolution of silicate sands: an experimental study at 100°C, 345 bars. Geol Soc Am Abstr 21: A49.

    Google Scholar 

  • Hanor JS, Workman AL (1986) Distribution of dissolved volatile fatty acids in some Louisiana oil field brines. Appl Geochem 1: 37–46.

    Article  Google Scholar 

  • Hare PE, Hoering TC, King K Jr (1980) Biogeochemistry of amino acids. Wiley, New York, 558 pp.

    Google Scholar 

  • Harrison WJ, Thyne GD (1992) Predictions of diagenetic reactions in the presence of organic acids. Geochim Cosmochim Acta 56: 565–586.

    Article  Google Scholar 

  • Hatton RS, Hanor JS (1984) Dissolved volatile fatty acids in subsurface hydropressured and geopressured brines: a review of published literature on occurrence, genesis, and thermochemical properties. US Dep Energy Rep DOE/NV/10174-3, June 25, 1984, Washington DC, pp 348-454.

    Google Scholar 

  • Hayes JM (1967) Organic constituents of meteorites — a review. Geochim Cosmochim Acta 31: 1395–1440.

    Article  Google Scholar 

  • Hennett R JC, Crerar DA, Schwartz J (1988) organic complexes in hydrothermal systems. Econ Geol 83: 742–764.

    Article  Google Scholar 

  • Hofstra AH, Emsbo P (1992) A new method to analyze anions and cations in fluid inclusions using ion chromatography — applications to ore genesis. Geol Soc Am Abstr Prog 24: A144.

    Google Scholar 

  • Huang WH, Keller WD (1970) Dissolution of rock-forming silicate minerals in organic acids: simulated first-stage weathering of fresh mineral surfaces. Am Mineral 55: 2076–2094.

    Google Scholar 

  • Jaffé R, Albrecht P, Oudin JL (1988) Carboxylic acids as indicators of oil migration. II. Case of the Mahakam Delta Indonesia. Geochim Cosmochim Acta 52: 2599–2607.

    Article  Google Scholar 

  • Kartsev AA (1976) Hydrogeology of oil and gas deposits. Natl Tech Inf Serv Rep TT73-58022, 323 pp.

    Google Scholar 

  • Kawamura K, Ishiwatari R (1985) Conversion of sedimentary fatty acids from extractable (unbound + bond) to tightly bound form during mild heating. Org Geochem 8: 197–201.

    Article  Google Scholar 

  • Kawamura K, Kaplan IR (1987) Dicarboxylic acids generated by thermal alteration of kerogen and humic acids. Geochim Cosmochim Acta 51: 3201–3207.

    Article  Google Scholar 

  • Kawamura K, Tannenbaum E, Huizinga BJ, Kaplan IR (1986) Volatile organic acids generated from kerogen during laboratory heating. Geochem J 20: 51–59.

    Article  Google Scholar 

  • Kharaka YK, Law LM, Carothers WW, Goerlitz DF (1976) Role of organic species dissolved in formation waters from sedimentary basins in mineral diagenesis. In: Gautier DL (ed) Roles of organic matter in sediment diagenesis. Soc Econ Paleontol Mineral Spec Publ 38, pp 111-122.

    Google Scholar 

  • Kharaka YK, Carothers WW, Rosenbauer RJ (1983) Thermal decarboxylation of acetic acid: implications for origin of natural gas. Geochim Cosmochim Acta 47: 397–402.

    Article  Google Scholar 

  • Knaepen WAI, Tijssen R, van den Berger EA (1990) Experimental aspects of partitioning tracer tests for residual oil saturation determination with FIA-based laboratory equipment. SPE Reservoir Eng 5: 239–244.

    Google Scholar 

  • Kudryakov VA (1974) Genetic significance of organic matter in subsurface waters in oil geology. Geol Nefti i Gaza 7: 66–68 (in Russian).

    Google Scholar 

  • Kvenvolden KA, Peterson E, Wehmiller J, Hare PE (1973) Racemization of amino acids in marine sediments determined by gas chromatography. Geochim Cosmochim Acta 37: 2215–2225.

    Article  Google Scholar 

  • Larese RE, Pittman ED (1987) Indirect evidence of secondary porosity in sandstones (Abstr). Am Assoc Petr Geol Bull 71: 581.

    Google Scholar 

  • Lee C, Bada JL, Peterson E (1976) Amino acids in modern and fossil woods. Nature 259: 183–186.

    Article  Google Scholar 

  • Leo A, Hansen C, Elkins D (1971) Partition coefficients and their uses. Chem Rev 71: 525–616.

    Article  Google Scholar 

  • Lochte HL, Littmann ER (1955) The petroleum acids and bases. Chemical Publishing Co, New York, 368 pp.

    Google Scholar 

  • Lowe WF (1953) History of the condensate well corrosion committee. In: Prange FA, Edwards WH, Greco EC, Griffith EE, Grimshaw JA, Nathan CC, Shock DA (eds) Condensate well corrosion. Nat Gasoline Assoc Am, Tulsa, pp 1–9.

    Google Scholar 

  • Lundegard PD, Kharaka YK (1990) Geochemistry of organic acids in subsurface waters. In: Melchoir D, Bassett R (eds) Chemical modeling in aqueous systems, II. Am Chem Soc, Washington DC, pp 169–189.

    Chapter  Google Scholar 

  • Lundegard PD, Land LS (1989) Carbonate equilibria and pH buffering by organic acids-response to changes in Pco2. Chem Geol 74: 277–287.

    Article  Google Scholar 

  • Lundegard PD, Senftle JT (1987) Hydrous pyrolysis: a tool for the study of organic acid synthesis. Appl Geochem 2: 605–612.

    Article  Google Scholar 

  • Lundegard PD, Land LS, Galloway WE (1984) Problem of secondary porosity: Frio Formation (Oligocene), Texas Gulf Coast. Geology 12: 399–402.

    Article  Google Scholar 

  • MacGowan DB, Surdam RC (1988) Difunctional carboxylic acid anions in oilfield waters. Org Geochem 12: 245–259.

    Article  Google Scholar 

  • MacGowan DB, Surdam RC (1990) Importance of organic-inorganic reactions to modeling water-rock interactions during progressive clastic diagenesis. In: Melchoir D, Bassett R (eds) Chemical modeling in aqueous systems, II. Am Chem Soc, Washington DC, pp 494–507.

    Chapter  Google Scholar 

  • MacGowan DB, Surdam RC, Ewing RE (1990) The effect of carboxylic acid anions on the stability of framework mineral grains in petroleum reservoirs. Soc Petrol Eng, Formation Evaluation, June, pp 161-166.

    Google Scholar 

  • Marley NA, Bennett P, Janecky DR, Gaffney JS (1989) Spectroscopic evidence for organic diacid complexation with dissolved silica in aqueous systems. 1. Oxalic acid. Org Geochem 14: 525–528.

    Article  Google Scholar 

  • Mast MA, Drever JI (1987) The effect of Oxalates on the dissolution rates of oligoclase and tremolite. Geochim Cosmochim Acta 51: 2559–2568.

    Article  Google Scholar 

  • Matusevich VM, Shvets VM (1973) Significance in petroleum prospecting of organic acids dissolved in ground waters of the western Siberian lowland. Geol Nefti i Gaza 10: 63–69 (in Russian).

    Google Scholar 

  • Means JL, Hubbard N (1987) Short-chain aliphatic acid anions in deep subsurface brines: a review of their origin, occurrence, properties, and importance and new data on their distribution and geochemical implications in the Palo Duro Basin, Texas. Org Geochem 11: 177–191.

    Article  Google Scholar 

  • Menaul PL (1944) Causative agents of corrosion in distillate field. Oil Gas J, Nov 11: 80–81.

    Google Scholar 

  • Obuchova ZP, Kutovaya AA (1968) Study on distribution of organic acids in condensation waters in the area of gas-condensate deposits. Korroziyi i Zashchita v Neftedoby-vayushchei Promyshlennost Nauch-Fekh 4: 16–19 (in Russian).

    Google Scholar 

  • Palmer DA, Drummond SE (1986) Thermal decarboxylation of acetate. Part 1. The kinetics and mechanism of reaction in aqueous solution. Geochim Cosmochim Acta 50: 813–823.

    Article  Google Scholar 

  • Parker PL (1969) Fatty acids and alcohols. In: Eglinton G, Murphy MTJ (eds) Organic geochemistry. Springer, Berlin Heidelberg New York, pp 357–373.

    Google Scholar 

  • Pittman ED (1992) Artifact porosity in thin sections of sandstone. J Sediment Petrol 62: 734–737.

    Google Scholar 

  • Prange FA (1953) Metallurgical factors. In: Prange FA, Edwards WH, Greco EC, Griffith TE, Grimshaw JA, Nathan CC, Shock DA (eds) Condensate well corrosion. Nat. Gasoline Assoc Am, Tulsa, pp 99–115.

    Google Scholar 

  • Prange FA, Edwards W, Greco EC, Griffith TE, Grimshaw JA, Nathan CC, Shock DA (1953) Condensate well corrosion. Nat Gasoline Assoc Am, Tulsa, 203 pp.

    Google Scholar 

  • Rogers GS (1917) Chemical relations of the oil-field waters in San Joaquin Valley, California. US Geol Surv Bull 653: 119 pp.

    Google Scholar 

  • Schmidt V, McDonald DA (1979) The role of secondary porosity in the course of sandstone diagenesis. In: Scholle PA, Schluger PR (eds) Aspects of diagenesis. Soc Econ Paleontol Mineral Spec Publ 26, pp 175-207.

    Google Scholar 

  • Shimoyama A, Johns WD (1971) Catalytic conversion of fatty acids to petroleum-like paraffins and their maturation. Nat Phys Sci 232: 140–144.

    Article  Google Scholar 

  • Shock DA (1953) Acidity of condensate well waters. In: Prange FA, Edwards WH, Greco EC, Griffith TE, Grimshaw JA, Nathan CC, Shock DA (eds) Condensate well corrosion. Nat Gasoline Assoc Am, Tulsa, pp 143–157.

    Google Scholar 

  • Shock EL (1988) Organic acid metastability in sedimentary basins. Geology 16: 886–890.

    Article  Google Scholar 

  • Shvets VM (1970) Concentration and distribution of organic substances in underground waters. Dokl Akad Nauk SSSR 201: 453–456 (in Russian).

    Google Scholar 

  • Shvets VM, Seletskiy UB (1968) Organic substances in the thermal waters of southern Kamchtka. Dokl Akad Nauk SSSR 182: 441–444 (in Russian).

    Google Scholar 

  • Stevenson FJ (1982) Humus chemistry: genesis, composition, reactions. Wiley-Interscience, New York, 443 pp.

    Google Scholar 

  • Stoessell RC, Pittman ED (1990) Secondary porosity geochemistry revisited: feldspar dissolution by carboxylic acids and their anions. Am Assoc Petrol Geol Bull 74: 1795–1805.

    Google Scholar 

  • Surdam RC, Boese SW, Crossey LJ (1984) The chemistry of secondary porosity. In: McDonald DA, Surdam RC (eds) Clastic diagenesis. Am Assoc Petrol Geol Mem 37, pp 127–149.

    Google Scholar 

  • Surdam RC, Crossey LJ, Hagen ES, Heasler HP (1989) Organic-inorganic interactions and sandstone diagenesis. Am Assoc Petrol Geol Bull 73: 1–23.

    Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Nijhoff/Junk, Boston, 497 PP.

    Book  Google Scholar 

  • Willey LM, Kharaka YK, Presser TS, Rapp JB, Barnes I (1975) Short chain aliphatic anions in oil field waters and their contribution to the measured alkalinity. Geochim Cosmochim Acta 39: 1707–1711.

    Article  Google Scholar 

  • Yang MM, Crerar DA, Irish DE (1989) Raman spectroscopic study of lead and zinc acetate complexes in hydrothermal solutions. Geochim Cosmochim Acta 53: 319–326.

    Article  Google Scholar 

  • Zinger AS, Kravchik TE (1972) Simplest organic acids in ground-water of the lower Volga region (genesis and possible use in prospecting for oil). Dokl Akad Nauk SSSR 203: 693–696 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lewan, M.D., Pittman, E.D. (1994). Introduction to the Role of Organic Acids in Geological Processes. In: Pittman, E.D., Lewan, M.D. (eds) Organic Acids in Geological Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78356-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78356-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78358-6

  • Online ISBN: 978-3-642-78356-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics