The Role of Bivalve Filter Feeder Material Fluxes in Estuarine Ecosystems

  • Richard F. Dame
Part of the Nato ASI Series book series (volume 33)


Bivalve reefs and beds are a common feature of many estuarine and coastal environments. Bivalve filter feeders dominate these communities removing food from and releasing waste materials to the overlaying waters. The surrounding shallow tidal waters provide a habitat for growing phytoplankton and an environment for nutrient recycling. In essence, these systems are natural “feed lots” with the herbivorous bivalves playing the same role as large mammals in cultivated terrestrial systems. This feature of bivalves has been recognized and exploited through culture for millennia. With the application of modern technology to bivalve cultivation, many estuarine systems are approaching and even exceeding the capabilities of these ecosystems to maintain their environmental quality. In this paper, I will review modern ecosystem concepts with respect to material processing and nutrient cycling emphasizing the role bivalve filter feeders play in shallow estuarine and coastal ecosystems. In addition, the published evidence of bivalve filter feeder influence on these ecosystems will be examined, synthesized and potential areas of research identified.


Salt Marsh Filter Feeder Oyster Reef Estuarine Ecosystem Material Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asmus H (1987) Secondary production of an intertidal mussel bed community related to its storage and turnover compartments. Mar Ecol Prog Ser 39:252–266CrossRefGoogle Scholar
  2. Asmus H Asmus RM Reise (1990) Exchange processe in an intertidal mussel bed: a Sylt-flume study in the Wadden Sea. Ber Biol Anst Helgoland 6:1–79Google Scholar
  3. Bahr LM (1976) Energetic aspects of the intertidal oyster reef community at Sapelo Islnad, Gerogia. Ecology 57:121–131CrossRefGoogle Scholar
  4. Bahr LM Lanier WP (1981) The ecology of intertidal oyster reefs of the South Atlantic coast: a commuunity profile. US Fish Wldf Ser Washington DCGoogle Scholar
  5. Baird D Milne H (1981) Energy flow in the Ythan Estuary, Aberdeenshire, Scotland. Est Coast Shelf Sci 13:455–472CrossRefGoogle Scholar
  6. Bernard FR (1974) Annual biodeposition and gross energy budget of mature Pacific oysters, Crassostrea gigas. J Fish Res Bd Canada 31:185–190Google Scholar
  7. Bertness MD (1984) Ribbed mussels and the productivity of Spartina alterniflora in a New England salt marsh. Ecology 65:1794–1807CrossRefGoogle Scholar
  8. Boucher G Boucher-Rodoni R (1988) Insitu measurement of respiratory metabolism and nitrogen fluxes at the interface of oyster beds. Mar Ecol Prog Ser 44:229–238CrossRefGoogle Scholar
  9. Boucher-Rodoni R Boucher G (1990) In situ study of the effect of oyster biomass on benthic metabolic exchange rates. Hydrobiol 206:115–123CrossRefGoogle Scholar
  10. Dame RF (1976) Energy flow in an intertidal oyster population. Est Coast Mar Sci 4:243–253CrossRefGoogle Scholar
  11. Dame RF (1987)The net flux of inorganic sediments by an intertidal oyster reef. Cont Shelf Res 7:1421–1424CrossRefGoogle Scholar
  12. Dame RF Dankers N (1988) Uptake and release of materials by a Wadden Sea mussel bed. J Exp Mar Biol Ecol 118:207–216CrossRefGoogle Scholar
  13. Dame RF Dankers N Prins T Jongsma H Smaal A (1991) The influence of mussel beds on nutrients in the Western Wadden Sea and Eastern Scheldt estuaries. Estuaries 14:130–138CrossRefGoogle Scholar
  14. Dame RF Spurrier JD Wolaver TG (1989) Carbon, nitrogen and phosphorus processing by an oyster reef. Mar Ecol Prog Ser 54:249–256CrossRefGoogle Scholar
  15. Dame RF Zingmark RG Haskin E (1984) Oyster reefs as processors of estuarine materials. J Exp Mar Biol Ecol 83:239–247CrossRefGoogle Scholar
  16. Deslous-Paoli JM Sornin JM Heral M (1987) Variations saisonnieres in situ de la production et de la composition des biodepots de trois mollusques estuariens (Mytilus edulis, Crassostrea gigas, Crepidula fornicata). Haliotis 16:233–245Google Scholar
  17. Dinet A Sornin J-M Sabliere A Delmas D Feuillet-girard (1990) Influence de la biodeposition de bivalves filtreurs sur les peuplements meiobenthiques d’un mariais maritime. Cah Biol Mar 31:307–322Google Scholar
  18. Doering PH Kelly JR Ovatt CA Sowers T (1987) Effects of the hard clam Mercenaria mercenaria on benthic fluxes of inorganic nutrients and gases. Mar Biol 94:377–3 83CrossRefGoogle Scholar
  19. Doering PH Oviatt CA (1986) Application of filtration rate models to field populations of bivalves: an assessment using experimental mesocosms. Mar Ecol Prog Ser 31:265–275CrossRefGoogle Scholar
  20. Doering PH Oviatt CA Kelly JR (1986) The effect of the filter feeding clam Mercenaria mercenaria on carbon cycling in experimental mesocosms. J Mar Res 44:839–861CrossRefGoogle Scholar
  21. Eiser W Kjerfve (1986) Marsh topograpy and hypsometric characteristics of a South Carolina salt marsh basin. Est Coast Shlef Sci 23:595–605CrossRefGoogle Scholar
  22. Fretwell SD (1987) Food chain dynamics: the central theory of ecology? Oikos 50:291–301CrossRefGoogle Scholar
  23. Hairston NG Smith FE Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425CrossRefGoogle Scholar
  24. Hunter MD Price PW (1992) Playing chutes and ladders: Heterogeneity and the relative roles of bottom-up and topdown forces in natural communities. Ecology 73:724–732Google Scholar
  25. Horsted SJ Nielsen TG Riemann Pock-Stee J Bjornsen PK (1988) Regulation of zooplankton by suspension-feeding bivalves and fish in estuarine enclosures. Mar Ecol Prog Ser 48:217–224CrossRefGoogle Scholar
  26. Jordan TE Valiela I (1982) A nitrogen budget of the ribbed mussel Geukensia demissa and its significance in nitrogen flow in a New England salt marsh. Limnol Oceanogr 27:75–90CrossRefGoogle Scholar
  27. Jørgensen CB (1990) Bivalve filter feeding: Hydrodynamics, bioenergetics, physiology and ecology. Olsen & Olsen, Fredensborg, DenmarkGoogle Scholar
  28. Juday (1940) The annual energy budget of an inland lake. Ecology 21:438–450CrossRefGoogle Scholar
  29. Kaspar HF Gillespie PA Boyer IC MacKenzie AL (1985) Effects of mussel aquaculture on the nitrogen cycle andbenthic communities of Kenepuru Sound, Marlborough Sounds, New Zealand. Mar Biol 85:127–136CrossRefGoogle Scholar
  30. Kautsky N (1981) On the trophic role of the blue mussel (Mytilus edulis) in a Baltic coastal ecosystem and the fate of the orgnaic matter produced by the mussels. Kieler Meeresforsch 5:454–461Google Scholar
  31. Kautsky N Evans S (1987) Role of biodeposition by Mytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem. Mar Ecol Prog Ser 38:201–212CrossRefGoogle Scholar
  32. Kautsky N Wallentinus I (1980) Nutrient release form a Baltic Mytilus-red algae community and its role in benthic and pelagic productiivty. Ophelia Supp. 1:17–30Google Scholar
  33. Kuenzler EJ (1961) Phosphorus budget of a mussel population. Limnol Oceanogr 6:400–415CrossRefGoogle Scholar
  34. Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–418CrossRefGoogle Scholar
  35. Maestrini SY Robert J-M Lefley JW Collos Y (1986) Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae. J Exp Mar Biol Ecol 102:75–98CrossRefGoogle Scholar
  36. Manahan DT Wright SH Stephens GC Rice MA (1982) Trans;ort of dissolved amino acids by the mussel, Mytilus edulis: demonstration of net uptake form natural seawater. Science 215:1253–1255PubMedCrossRefGoogle Scholar
  37. Menge, B (1992) Community regulation: under what conditions are bottom-up factors important on rocky shores? Ecology 73:755–765CrossRefGoogle Scholar
  38. Möbius K (1877) Die Auster und die Austerwirthschaft. Wiegundt, Hempel & Parey, BerlinGoogle Scholar
  39. Newell RIE (1988) Ecological changes in Chesapeake Bay: Are they the result of overharvesting the American oyster, Crassostrea virginica? Chesapeake Res Consor Pub 129:536–546Google Scholar
  40. Nixon SW Oviatt CA Garber J Lee V (1976) Diel metabolism and nutrient dynamics of a salt marsh embayment. Ecology 57:740–750CrossRefGoogle Scholar
  41. Odum EP (1953) The Fundamentals of Ecology. Saunders, PhiladelphiaGoogle Scholar
  42. Odum EP (1983) Basic Ecology. Saunders, PhiladelphiaGoogle Scholar
  43. Odum EP Biever LJ (1984) Resource quality, mutualism, and energy partitioning in food chains. Am Nat 124:360–376CrossRefGoogle Scholar
  44. Odum HT Siler WL Beyers FJ Armstrong N (1963) Experiments in engineering marine ecosystems. Pub Inst Mar Sci Texas 9:393–404Google Scholar
  45. Officer CB Smyda TJ Mann R (1982) Benthic filter feeding: a natural eutrophication control. Mar Ecol Prog Ser 9:203–210CrossRefGoogle Scholar
  46. Oksanen L (1988) Ecosystem organization: mutualism and cybernetics or plain Darwinian struggle for existence? Am Nat 131:424–444CrossRefGoogle Scholar
  47. O’Neill RV DeAngelis DL Waide JB, Allen TFH (1986) A Hierarchical Concept of Ecosystems. Princeton U. Press, PrincetonGoogle Scholar
  48. Prins TC Smaal AC (1990) Benthic-pelagic coupling: the release of inorganic nutrients by an intertidal bed of Myti lus edulis. In Barnes M and Gibson RN (eds) Trophic Relationships in the Marine Environment. Aberdeen U Press, AberdeenGoogle Scholar
  49. Redfield AC (1958) The biological control of chemical factors in the environment. Am. Scientist 46:205–221Google Scholar
  50. Riemann Nielsen TG Horsted SJ Bjornsen KP Pock-Steen J (1988) Regulation of phytoplankton biomass in estuarine enclosures. Mar Ecol Prog Ser 48:205–215CrossRefGoogle Scholar
  51. Rodhouse PG Roden CM (1987) Carbon budget for a coastal inlet in relation to intensive cultivation of suspension-feeding bivalve molluscs. Mar Ecol Prog Ser 36:225–236CrossRefGoogle Scholar
  52. Robert JM Maestrini SY Heral M Zanette Y (1982) Production des micro-algues des claires ostreicoles en relation avec l’azote orgnique dissous excrete par les hues. Oceanol Act 1989:389–395Google Scholar
  53. Smaal AC Verhagen HG Coosen J Haas HA (1986) Interaction between seston quantity and quality and benthic suspension feeders in the Oosterschelde, The Netherlands. Ophelia 26:285–399Google Scholar
  54. Sornin JM Feuillet M Heral M Deslous-Paoli (1983) Effet des biodeposts de l’hue Crassostrea gigas (Thunberg) sur h’accumulation de matires organiques dan les parcs du bassin de Marennes-Oleron. J Moll Stud (Suppt) 12A:185–197.Google Scholar
  55. Sornin JM Feuillet M Heral M Fardeau J.-C. (1986) Influence des cultures d’hues Crassostrea gigas sur le cycle du phosphore en zone intertidale: role de la biodeposition. Oceanol Acta 9:313–322Google Scholar
  56. Tiedje JM Sexstone AJ Myrold DD Robinson JA (1982) Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek 48:569–583PubMedCrossRefGoogle Scholar
  57. Ulanowics RE Tuttle JH (1992) The trophic consequences of oyster stock rehabilitation in Chesapeake Bay. Estuaries 15:257–265CrossRefGoogle Scholar
  58. Vadas RL (1989) Food web patterns in ecosystems: a reply to Fretwell and Oksanen. Oikos 56:339–343CrossRefGoogle Scholar
  59. Verwey J (1952) On the ecology and distribution of cockles and mussels in the Dutch Wadden Sea, their role in sedimentation and the source of their food supply. Arch Neerland Zool 10:172–239Google Scholar
  60. Wright SH (1982) a nutritional role for amino acid transport in filter feeding marine invertebrates. Am Zool 22:621–634Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Richard F. Dame
    • 1
  1. 1.Coastal Carolina CollegeConwayUSA

Personalised recommendations