G-Protein α Subunit Chimeras Reveal Specific Regulatory Domains Encoded in the Primary Sequence

  • M. Russell
  • G. L. Johnson
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 108 / 2)

Abstract

Within the GTPase family of proteins the members referred to as G-proteins provide a signal transduction coupling mechanism for many cell surface receptors as described in other chapters in this volume. G-proteins are responsible for regulating an intracellular effector, such as an ion channel or an enzyme, in response to an activated receptor (Johnson and Dhanasekaran 1989). G-proteins exist as heterotrimers composed of α,β, and γ subunits. The G-protein β subunit is the component that binds GDP and GTP. Receptors coupled to specific G proteins catalyze GDP dissociation, allowing GTP to bind. The GTPα complex in turn regulates the activity of specific effectors. The lifetime of the activated GTPα complex is controlled by an intrinsic GTPase encoded in the α subunit which hydrolyzes the bound GTP to GDP (αGDP) returning the a subunit to an inactive state.

Keywords

Hydrolysis Lymphoma Amide Glycine Cysteine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbacid M (1987) ras genes. Annu Rev Biochem 56:779–827.PubMedCrossRefGoogle Scholar
  2. Berlot CH, Bourne HR (1992) Identification of effector-activating residues of G Cell 68:911–922.PubMedCrossRefGoogle Scholar
  3. Birnbaumer L, Abramowitz J, Brown AM (1990) Receptor-effector coupling by G proteins. Biocim Biophys Acta 1031:163–224.Google Scholar
  4. Blumer KL, Thorner J (1991) Receptor-G protein signaling in yeast. Annu Rev Physiol 53:37.PubMedCrossRefGoogle Scholar
  5. Bos JL (1989) ras oncognes in human cancer: a review. Cancer Res 49:4682–4689.PubMedGoogle Scholar
  6. Bourne HR, Sanders DA, McCormick F (1991a) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132.CrossRefGoogle Scholar
  7. Bourne HR, Sanders DA, McCormick F (1991b) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127.PubMedCrossRefGoogle Scholar
  8. Casey PJ, Gilman AG (1988) G protein involvement in receptor-effector coupling. J Biol Chem 263:2577–2580.PubMedGoogle Scholar
  9. Climenti E, Malgaretti N, Meldolesi J, Toramelli R (1990) A new constitutively activating mutation of Gs protein a subunit-gsp oncogene is found in human pituitary tumors. Oncogene 5:1059–1061.Google Scholar
  10. de Vos AM, Tong L, Milburn MV, Matias PM, Jancarik J, Noguchi S, Nishimura S, Miura K, Dhtsaka E, Kim SH (1988) Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. Science 239:888–893.PubMedCrossRefGoogle Scholar
  11. Dhanasekaran N, Osawa S, Johnson GL (1991) The NH2-terminal α subunit attenuator domain confers regulation of G protein activation by βγ complexes. J Cell Biochem 47:352–358.PubMedCrossRefGoogle Scholar
  12. Gallego C, Gupta SK, Winitz S, Eisfelder BJ, Johnson GL (1992) Myristoylation of the Gαi2 polypeptide is required for its signalling and transformaiton functions. Proc Natl Acad Sci USA (in press).Google Scholar
  13. Gibbs JB, Sigal IS, Poe M, Scolnick EM (1984) Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci USA 81:5704–5708.PubMedCrossRefGoogle Scholar
  14. Gilman AG (1987) G proteins: transducers of receptor generated signals. Annu Rev Biochem 56:615–649.PubMedCrossRefGoogle Scholar
  15. Graziano MP, Gilman AG (1989) Synthesis in Escherichia coli of GTPase-deficient mutants of G. J Biol Chem 264:15475–15482.PubMedGoogle Scholar
  16. Gupta SK, Gallego C, Lowndes JM, Pleiman CM, Sable C, Eisfelder BJ, Johnson GL (1991a) Analysis of the fibroblast transformation potential of GTPase-deficient gip2 oncogenes. Mol Cell Biol 12:190–197.Google Scholar
  17. Gupta SK, Dhanasekaran N, Heasley LE, Johnson GL (1991b) Activating mutations in the NH2 and COOH-terminal moieties of the G subunit have dominant phenotypes and distinguishable kinetics of adenylyl cyclase stimulation. J Cell Biochem 47:357–368.CrossRefGoogle Scholar
  18. Gutkind JS, Novotony EA, Brann MR, Robbins KC (1991) Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes. Proc Natl Acad Sci USA 88:4703–4707.PubMedCrossRefGoogle Scholar
  19. Johnson GL, Dhanasekaran N (1989) The G-protein family and their interaction with receptors. Endo Rev 10:317–333.CrossRefGoogle Scholar
  20. Johnson GL, Dhanasekaran N, Gupta SK, Lowndes JM, Vaillancourt RR, Ruoho AE (1991) Genetic and structural analysis of G protein α subunit regulatory domains. J Cell Biochem 47:136–146.PubMedCrossRefGoogle Scholar
  21. Julius D, Tivelli TJ, Jessell TM, Axel R (1989) Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation. Science 244:1057–1062.PubMedCrossRefGoogle Scholar
  22. Jurnak F (1985) Structure of the GDP domain of EF-Tu and location of the amino acids homologous to the ras oncogene proteins. Science 230:32–36.PubMedCrossRefGoogle Scholar
  23. Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE (1989) G-protein βγ-subunits activate the cardiac muscarinic K+-channel via phospholipase A2. Nature 337:557–560.PubMedCrossRefGoogle Scholar
  24. Kumar R, Sukumar S, Barbacid M (1990) Activation of ras oncogenes preceeding the onset of neoplasia. Science 248:1101–1104.PubMedCrossRefGoogle Scholar
  25. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumors. Nature 340:692–696.PubMedCrossRefGoogle Scholar
  26. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326.PubMedCrossRefGoogle Scholar
  27. Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Such QY, Clark OH, Kawasaki E, Bourne HR, McCormick F (1990) Two G protein oncogenes in human endocrine tumors. Science 249:655–659.PubMedCrossRefGoogle Scholar
  28. Masters SB, Miller RT, Chi MH, Chang FH, Beiderman B, Lopez NG, Bourne HR (1989) Mutations in the GTP binding site of Gs alpha alter stimulation of adenylyl cyclase. J Biol Chem 264:15467–15474.PubMedGoogle Scholar
  29. Masters SB, Sullivan KA, Miller RT, Beiderman B, Copey NG, Ramachandran J, Bourne HR (1988) Carboxyl terminal domain of Gαs specifies coupling of receptors to stimulation of adenylyl cyclase. Science 241:448–451.PubMedCrossRefGoogle Scholar
  30. McCormick F (1989) Gasp: not just another oncogene. Nature 340:678–679.PubMedCrossRefGoogle Scholar
  31. McGrath JP, Capon DJ, Goeddel DV, Levinsen AD (1984) Comparative biochemical properties of normal and activated human ras p21 protein. Nature 310:644–649.PubMedCrossRefGoogle Scholar
  32. Miller RT, Masters SB, Sullivan KA, Beiderman B, Bourne HR (1988) A mutation that prevents GTP-dependent activation of α chain of Gs. Nature 334:712–715.PubMedCrossRefGoogle Scholar
  33. Osawa S, Johnson GL (1991) A dominant negative Gαs mutant is rescued by secondary mutation of the α chain amino terminus. J Biol Chem 266:4673–4676.PubMedGoogle Scholar
  34. Osawa S Dhanasekaran N, Woon CW, Johnson GL (1990a) Gαi-Gαs chimeras define the function of α chain domains in control of G protein activation and βγ subunit complex interactions. Cell 63:697–706.PubMedCrossRefGoogle Scholar
  35. Osawa S, Heasley LE, Dhanasekaran N, Gupta SK, Woon CW, Berlot C, Johnson GL (1990b) Mutation of the Gs protein α subunit NH2 terminus relieves an attenuator function, resulting in constitutive adenylyl cyclase stimulation. Mol and Cell Biol 10:2931–2940.Google Scholar
  36. Pace AM, Wong YH, Bourne HR (1991) A mutant α subunit of Gi2 induces neoplastic transformation of Rat-1 cells. Proc Natl Acad Sci USA 88:7031–7035.PubMedCrossRefGoogle Scholar
  37. Pai, EF, Kabash W, Krengel U, Holmes KG, John J, Wittinghofer A (1989) Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341:209–214.PubMedCrossRefGoogle Scholar
  38. Schlichting I, Almo SC, Parr G, Wilson K, Petratos K, Lentfer A, Wittinghofer A, Kabash W, Pai EF, Petsho GA, Goody RS (1990) Time-resolved X-ray crystallographic study of the conformational change in Ha-ras p21 protein on GTP hydrolysis. Nature 345:309–315.PubMedCrossRefGoogle Scholar
  39. Sigal IS, Gibbs JB, D’Alonzo JS, Temeles GL, Wolanski BS, Socker SH, Scolnick EM (1986) Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effects. Proc Natl Acad Sci USA 83:952–956.PubMedCrossRefGoogle Scholar
  40. Stryer L, Bourne H (1986) G proteins: a family of signal transducers. Annu Rev Cell Biol 2:391–419.PubMedCrossRefGoogle Scholar
  41. Suarez HG, du Vullard JA, Caillou B, Schumberger M, Parmentier C, Monier R (1991) gsp mutations in human thyroid tumors. Oncogene 6:677–679.PubMedGoogle Scholar
  42. Tang W-J, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–1503.PubMedCrossRefGoogle Scholar
  43. Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545.PubMedCrossRefGoogle Scholar
  44. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM (1991) Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 325:1688–1695.PubMedCrossRefGoogle Scholar
  45. Woon CW, Heasley L, Osawa S, Johnson GL (1989) Mutation of glycine 49 to valine in the α subunit of Gs results in constitutive elevation of cyclic AMP synthesis. Biochemistry 28:4547–4551.PubMedCrossRefGoogle Scholar
  46. Woon CW, Soparkar S, Heasley L, Johnson GL (1988) Expression of a Gαs/Gαi chimera that constitutively activates cyclic AMP synthesis. J Biol Chem 264:5687–5693.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Russell
  • G. L. Johnson

There are no affiliations available

Personalised recommendations