Skip to main content

Qualitative and Quantitative Characterization of the Distribution of G-Protein α Subunits in Mammals

  • Chapter
GTPases in Biology II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

Abstract

A large family of heterotrimeric guanine nucleotide binding proteins (G-proteins) have now been identified by a combination of biochemical and molecular biological approaches (Simon et al. 1991; Kaziro et al. 1991). In a number of cases the proteins have been purified essentially to homogeneity, and much is known about the receptor and effector systems which interact with them. However, in a number of other examples the protein has yet to be identified, and little more than information on the predicted protein sequence and tissue distribution of corresponding mRNA is currently known (Strathmann and Simon 1991). Details of the tissue and cellular distribution of these G-protein polypeptides (Milligan 1989) would clearly assist in efforts to delineate their likely functions. For example, knowledge of the tissue distribution of relevant mRNA and of the CNS sites of action of pharmaceutical agents assisted in the identification of an orphan G-protein linked receptor cDNA as one encoding a cannabinoid receptor (Matsuda et al. 1990). While it is generally accepted that the central role for heterotrimeric G-proteins is in the transmission of information across the limiting external membrane of a cell, it is now clear that the subcellular location of G-proteins is not restricted to the plasma membrane (Milligan 1989; Ercolani et al. 1990; Burgoyne 1992; Ktiskatis et al. 1992). For example, it has been reported that in LLC-PK1 cells Gi3α displays a distinct perinuclear pattern of immunostaining suggesting location on the Golgi membranes (Ercolani et al. 1990), and a similar pattern of Gi3α immunoreactivity has been noted in BALB/c3T3 fibroblasts (LaMorte et al. 1992). A Gi-like polypeptide has also been reported in rat liver nuclei (Takei et al. 1992), and agonist activation of receptors can, at least in certain circumstances, alter the cellular distribution and/or amounts of G-proteins (McKenzie and Milligan 1990b; Green et al. 1992; Negishi et al. 1992; see Milligan and Green 1991 for review). Knowledge of the cellular localization of G-proteins may thus assist in the identification of further functions for these polypeptides (Ercolani et al. 1990; Ktiskatis et al. 1992; see Burgoyne 1992 for review). Furthermore, at least in certain polarized cells, G-proteins are not evenly distributed in the plasma membrane (Ali et al. 1989; Gabrion et al. 1989; Ercolani et al. 1990; van den Berghe et al. 1991), and the possibility of a regulatory role for cytoskeletal control of G-protein distribution in a cell is gaining credence (Wang et al. 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adie EJ, Mullaney I, McKenzie FR, Milligan G (1992) Concurrent downregulation of IP prostanoid receptors and the α subunit of the stimulatory guanine nucleotide binding protein (Gs) during prolonged exposure of neuroblastoma x glioma cells to prostanoid agonists. Quantitation and functional implications. Biochem J 285:529–536.

    PubMed  CAS  Google Scholar 

  • Ali N, Milligan G, Evans WH (1989) Distribution of G-proteins in rat liver plasma membrane domains and endocytic pathways. Biochem J 261:950–912.

    Google Scholar 

  • Asano T, Semba R, Ogasawara N, Kato K (1987) Highly sensitive immunoassay for the alpha subunit of the GTP-binding protein Go and its regional distribution in bovine brain. J Neurochem 48:1617–1623.

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J, Brabet P, Gabrion J, Hornberger V, Rouot B, Toutant M (1990) Structural, immunobiological, and functional characterization of guanine nucleotide-binding protein Go. In: Iyengar R, Birnbaumer L (eds) G-proteins. Academic Press, San Diego, pp 81–113.

    Google Scholar 

  • Brabet P, Dumuis A, Sebben M, Pantaloni C, Bockaert J, Hornberger V (1988) Immunocytochemical localization of the guanine nucleotide-binding protein Go in primary culture of neuronal and glial cells. J Neurosci 8:701–708.

    PubMed  CAS  Google Scholar 

  • Brann MR, Collins RM, Spiegel AM (1987) Localization of mRNAs encoding the α subunit of signal transducing G-proteins within rat brain and among peripheral tissues. FEBS Lett 222:191–198.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD (1992) Trimeric G proteins in golgi transport. Trends Biochem Sci 17:87–88.

    Article  PubMed  CAS  Google Scholar 

  • Chang F-H, Bourne HR (1989) Cholera toxin induces cAMP-independent degradation of Gs. J Biol Chem 264:5352–5357.

    PubMed  CAS  Google Scholar 

  • Ercolani L, Stow JL, Boyle JF, Holtzman EJ, Lin H, Grove JR, and Ausiello DA (1990) Membrane localization of the pertussis toxin-sensitive G-protein subunits αi2 and α3 and expression of a metallothionein-αi2 fusion gene in LLC-PK1 cells. Proc Natl Acad Sci USA 87:4635–4639.

    Article  PubMed  CAS  Google Scholar 

  • Falloon J, Malech H, Milligan G, Unson C, Kahn R, Goldsmith P, Spiegel A (1986) Detection of the major pertussis toxin substrate of human leukocytes with antisera raised against synthetic peptides. FEBS Lett 209:352–356.

    Article  PubMed  CAS  Google Scholar 

  • Freissmuth M, Gilman AG (1989) Mutations of Gsα designed to alter the reactivity of the protein with bacterial toxins. Substitutions at Arg 187 results in the loss of GTPase activity. J Biol Chem 264:21907–21914.

    PubMed  CAS  Google Scholar 

  • Gabrion J, Brabet P, Nguyen-Than Dao B, Homburger V, Dumuis A, Sebben M, Rouot B, Bockaert J (1989) Ultrastructural localization of the GTP binding protein Go in neurons. Cellular Signalling 1:107–123.

    Article  PubMed  CAS  Google Scholar 

  • Gierschik P, Codina J, Simons C, Birnbaumer L, Spiegel A (1985) Antisera against a guanine nucleotide binding protein from retina cross-react with the beta subunit of the adenylyl cyclase associated guanine nucleotide binding proteins, Ns and Ni. Proc Natl Acad Sci USA 82:727–731.

    Article  PubMed  CAS  Google Scholar 

  • Gierschik P, Milligan G, Pines M, Goldsmith P, Codina J, Klee W, Spiegel A (1986a) Use of specific antibodies to quantitate the guanine nucleotide binding protein Go in brain. Proc Natl Acad Sci USA 83:2258–2262.

    Article  PubMed  CAS  Google Scholar 

  • Gierschik P, Falloon J, Milligan G, Pines M, Gallin JI, Spiegel A (1986b) Immuno-chemical evidence for a novel pertussis toxin substrate in human neutrophils. J Biol Chem 261:8058–8062.

    PubMed  CAS  Google Scholar 

  • Gierschik P, Jakobs K-H (1987) Receptor mediated ADP-ribosylation of a phos-pholipase G-stimulating G-protein. FEBS Lett 224:219–223.

    Article  PubMed  CAS  Google Scholar 

  • Gierschik P, Sidiropoulos D, Jakobs K-H (1989) Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J Biol Chem 264:21470–21473.

    PubMed  CAS  Google Scholar 

  • Goldsmith P, Gierschik P, Milligan G, Unson C, Vinitsky R, Malech HL, Spiegel AM (1987) Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophils and brain. J Biol Chem 262:14683–14688.

    PubMed  CAS  Google Scholar 

  • Graber SG, Figler RA, Garrison JC (1992) Expression and purification of functional G-protein α subunits using a baculovirus expression system. J Biol Chem 267: 1271–1278.

    PubMed  CAS  Google Scholar 

  • Gutowski S, Smrcka A, Nowak L, Wu D, Simon M, Sternweis PC (1991) Antibodies to the αq subfamily of guanine nucleotide binding regulatory protein α subunits attenuate activation of phosphatidylinositol 4,5-bisphosphate hydrolysis by hormones. J Biol Chem 266:20519–20524.

    PubMed  CAS  Google Scholar 

  • Hadcock JR, Ros M, Watkins DC, Malbon CC (1990) Cross-regulation between G-protein-mediated pathways. Stimulation of adenylyl cyclase increases expression of the inhibitory G-protein, Giα2. J Biol Chem 265:14784–14790.

    PubMed  CAS  Google Scholar 

  • Hadcock JR, Port JD, Malbon CC (1991) Cross-regulation between G-protein mediated pathways. Activation of the inhibitory pathway of adenylylcyclase increases the expression of β2-adrenergic receptors. J Biol Chem 266:11915–11922.

    PubMed  CAS  Google Scholar 

  • Iiri T, Tohkin M, Morishima N, Ohoka Y, Ui M, Katada T (1989) Chemotactic peptide receptor-supported ADP-ribosylation of a pertussis toxin substrate GTP-binding protein by cholera toxin in neutrophil-type HL 60 cells. J Biol Chem 264:21394–21400.

    PubMed  CAS  Google Scholar 

  • Jones DT, Reed RR (1989) Golf: an olfactory neuron specific G-protein involved in odorant signal transduction. Science 244:790–795.

    Article  PubMed  CAS  Google Scholar 

  • Kaziro Y, Itoh H, Kozasa T, Nakafuka M, Satoh M (1991) Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem 60:349–400.

    Article  PubMed  CAS  Google Scholar 

  • Ktiskatis NT, Linder M, Roth MG (1992) Action of brefeldin A blocked by activation of a pertussis-toxin sensitive G-protein. Nature 356:344–346.

    Article  Google Scholar 

  • Lad RP, Simons C, Gierschik P, Milligan G, Woodward C, Griffo M, Goldsmith P, Ornberg R, Gerfen CR, Spiegel A (1987) Differential distribution of signal transducing G-proteins in retina. Brain Res 423:237–246.

    Article  PubMed  CAS  Google Scholar 

  • LaMorte VJ, Goldsmith PK, Spiegel AM, Meinkoth JL, Feramisco JR (1992) Inhibition of DNA synthesis in living cells by microinjection of Gi2 antibodies J Biol Chem 267:691–694.

    PubMed  CAS  Google Scholar 

  • Law SF, Manning D, Reisine T (1991) Identification of the subunits of GTP-binding proteins coupled to somatostatin receptors. J Biol Chem 266:17885–17897.

    PubMed  CAS  Google Scholar 

  • Lerea CL, Somers DE, Hurley JB, Klock IB, Bunt-Milan AH (1986) Identification of specific transducin alpha subunits in retinal rod and cone photoreceptors. Science 234:77–80.

    Article  PubMed  CAS  Google Scholar 

  • Linder ME, Ewald DA, Miller RJ, Gilman AG (1990) Purification and characterization of Goα and three types of Giα after expression in Escherichia coli. J. Biol Chem 265:8243–8251.

    CAS  Google Scholar 

  • Linder ME, Pang I-H, Duronio RJ, Gordon JI, Sternweis PC, Gilman AG (1991) Lipid modifications of G-protein subunits. Myristoylation of Goα increases its affinity for βγ. J Biol Chem 266:4654–4659.

    PubMed  CAS  Google Scholar 

  • Malbon CC, Hadcock JR, Rapiejko PJ, Ros M, Wang HY, Watkins DC (1990) Regulation of transmembrane signalling elements: transcriptional, post-transcriptional and post-translational controls. Biochem Soc Symp 56:155–164.

    PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564.

    Article  PubMed  CAS  Google Scholar 

  • McClue SJ, Milligan G (1991) Molecular interaction of the human α2-C10 adrenergic receptor, when expressed in Rat-1 fibroblasts, with multiple pertussis toxinsensitive guanine nucleotide binding proteins: studies with site directed antisera. Mol Pharmacol 40:627–632.

    PubMed  CAS  Google Scholar 

  • McClue SJ, Selzer E, Freissmuth M, Milligan G (1992) Gi3 does not contribute to the inhibition of adenylate cyclase when stimulation of an α2 adrenergic receptor causes activation of both Gi2 and Gi3. Biochem J 284:565–568.

    PubMed  CAS  Google Scholar 

  • McFadzean I, Mullaney I, Brown DA, Milligan G (1989) Antibodies to the GTP binding protein, Go, antagonize noradrenaline-induced calcium current inhibition in NG108-15 hybrid cells. Neuron 3:177–182.

    Article  PubMed  CAS  Google Scholar 

  • McKenzie FR, Milligan G (1990a) δ Opioid receptor-mediated inhibition of adenylate cyclase is transduced specifically by the guanine nucleotide binding protein Gi2 Biochem J 267:391–398.

    CAS  Google Scholar 

  • McKenzie FR, Milligan G (1990b) Prostaglandin El-mediated, cyclic AMP-independent, downregulation of Gsα in neuroblastoma X glioma hybrid cells J Biol Chem 265:17084–17093.

    PubMed  CAS  Google Scholar 

  • Milligan G (1988) Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem J 255:1–13.

    PubMed  CAS  Google Scholar 

  • Milligan G (1989) Tissue distribution and subcellular location of guanine nucleotide binding proteins: implications for cellular signalling. Cell Signalling 1:411–419.

    Article  PubMed  CAS  Google Scholar 

  • Milligan G (1992) Multiple heterotrimeric guanine nucleotide binding proteins: roles in the determination of cellular signalling specificity. Biochem Soc Trans 20:135–140.

    PubMed  CAS  Google Scholar 

  • Milligan G, Gierschik P, Spiegel AM, Klee WA (1986) The GTP-binding regulatory proteins of neuroblastoma x glioma, NG108-15, and glioma, C6, cells. Immuno-chemical evidence of a pertussis toxin substrate that is neither Ni nor No. FEBS Lett 195:225–230.

    Article  PubMed  CAS  Google Scholar 

  • Milligan G, McKenzie FR (1988) Opioid peptides promote cholera toxin catalysed ADP-ribosylation of the inhibitory guanine nucleotide binding protein (Gi) in membranes of neuroblastoma x glioma hybrid cells. Biochem J 22:369–373.

    Google Scholar 

  • Milligan G, Davies S-A, Houslay MD, Wakelam MJO (1989a) Identification of the pertussis and cholera toxin substrates in normal and N-ras transformed NIH3T3 fibroblasts and an assessment of their involvement in bombesin-stimulation of inositol phospholipid metabolism. Oncogene 4:659–663.

    PubMed  CAS  Google Scholar 

  • Milligan G, Unson CG, Wakelam MJO (1989b) Cholera toxin treatment produces down-regulation of the α-subunit of the stimulatory guanine-nucleotide binding protein (Gs). Biochem J 262:643–649.

    PubMed  CAS  Google Scholar 

  • Milligan G, Green A (1991) Agonist control of G-protein levels. Trends Pharmacol Sci 12:207–209.

    Article  PubMed  CAS  Google Scholar 

  • Milligan G, Carr C, Gould GW, Mullaney I, Lavan BE (1991) Agonist-dependent, cholera toxin-catalysed ADP-ribosylation of pertussis toxin-sensitive G-proteins following transfection of the human α2-C10 adrenergic receptor into Rat 1 fibroblasts. Evidence for the direct interaction of a single receptor with two pertussis toxin-sensitive G-proteins, Gi2 and Gi3. J Biol Chem 266:6447–6455.

    PubMed  CAS  Google Scholar 

  • Milligan G, Mullaney I, Mitchell FM (1992) Immunological identification of the α subunit of G13, a novel guanine nucleotide binding protein. FEBS Lett 297: 186–188.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell FM, Griffiths SL, Saggerson ED, Houslay MD, Knowler JT, Milligan G (1989) Guanine nucleotide binding proteins expressed in rat white adipose tissue. Identification of both mRNAs and proteins corresponding to Gi1, Gi2 and Gi3. Biochem J 262:403–408.

    PubMed  CAS  Google Scholar 

  • Mitchell FM, Mullaney I, Godfrey PP, Arkinstall SJ, Wakelam MJO, Milligan G (1991) Widespread distribution of Gqα/G11α detected immunologically by an antipeptide antiserum directed against the predicted C-terminal decapeptide. FEBS Lett 287:171–174.

    Article  PubMed  CAS  Google Scholar 

  • Mullaney I, Milligan G (1990) Identification of two distinct isoforms of the guanine nucleotide binding protein Go in neuroblastoma x glioma hybrid cells: independent regulation during cyclic AMP-induced differentiation. J Neurochem 55:1890–1898.

    Article  PubMed  CAS  Google Scholar 

  • Murphy PM, Edie B, Goldsmith P, Brann M, Gierschik P, Spiegel A, Malech HL (1987) Detection of multiple froms of Gi alpha in HL60 cells. FEBS Lett 221:81–86.

    Article  PubMed  CAS  Google Scholar 

  • Pines M, Gierschik P, Milligan G, Klee W, Spiegel A (1985) Antibodies against the C-terminal 5 kDa peptide of the alpha subunit of transducin crossreact with the 40 but not the 39 kDa guanine nucleotide binding protein from brain. Proc Natl Acad Sci 82:4095–4099.

    Article  PubMed  CAS  Google Scholar 

  • Ransnas LA, Insel PA (1988) Quantitation of the guanine nucleotide binding regulatory protein Gs in S49 cell membranes using antipeptide antibodies to αs. J Biol Chem 263:9482–9485.

    PubMed  CAS  Google Scholar 

  • Ransnas LA, Svoboda P, Jasper JR, Insel PA (1989) Stimulation of β-adrenergic receptors of S49 lymphoma cells redistributes the α subunit of the stimulatory G-protein between cytosol and membranes. Proc Natl Acad Sci USA 86: 7900–7903.

    Article  PubMed  CAS  Google Scholar 

  • Ribiero-Neto FAP, Rodbell M (1989) Pertussis toxin induces structural changes in Ga proteins independently of ADP-ribosylation. Proc Natl Acad Sci USA 86:2577–2581.

    Article  Google Scholar 

  • Scherer NM, Toro M-J, Entman ML, Birnbaumer L (1987) G-protein distribution in canine cardiac sarcoplasmic reticulum and sacrolemma: comparison to rabbit skeletal muscle membranes and to brain and erythrocyte G-proteins. Arch Biochem Biophys 259:431–440.

    Article  PubMed  CAS  Google Scholar 

  • Shears SB, Evans WH, Kirk CJ, Michell RH (1988) Preferential localization of rat liver D-myo-inositol 1,4,5-triksphosphate/l,3,4,5-tetraksphosphate 5-phosphatase in bile-canalicular plasma membrane and “late” endosomal vesicles. Biochem J 256:363–369.

    PubMed  CAS  Google Scholar 

  • Shenker A, Goldsmith P, Unson CG, Spiegel AM (1991) The G-protein coupled to the thromboxane A2 receptor in human platelets is a member of the novel Gq family. J Biol Chem 266:9309–9313.

    PubMed  CAS  Google Scholar 

  • Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808.

    Article  PubMed  CAS  Google Scholar 

  • Simonds WF, Goldsmith PK, Woodward CJ, Unson CG, Spiegel AM (1989a) Receptor and effector interactions of Gs: functional studies with antibodies to the αs carboxyl-terminal decapeptide. FEBS Lett 249:189–194.

    Article  PubMed  CAS  Google Scholar 

  • Simonds WF, Goldsmith PK, Codina J, Unson CG, Spiegel AM (1989b) Gi2 mediates α2 adrenergic inhibition of adenylate cyclase in platelet membranes. In situ identification with Gα C-terminal antibodies. Proc Natl Acad Sci USA 86:7809–7813.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel AM (1990) Immunologic probes for heterotrimeric GTP-binding proteins. In: Iyengar.R, Birnbaumer L (eds) G-proteins. Academic, San Diego, pp 116–143.

    Google Scholar 

  • Strathmann MP, Simon MI (1991) Gα12 and Gα13 subunits define a fourth class of G protein α subunits. Proc Natl Acad Sci USA 88:5582–5586.

    Article  PubMed  CAS  Google Scholar 

  • Takei Y, Kurosu H, Takahashi K, Katada T (1992) A GTP-binding protein in rat liver nuclei serving as the specific substrate of pertussis toxin-catalysed ADP-ribosylation. J Biol Chem 267:5085–5089.

    PubMed  CAS  Google Scholar 

  • Terashima T, Katada T, Oinuma M, Inoue Y, Ui M (1987) Immuno-histochemical localization of guanine nucleotide binding proteins in rat retina. Brain Res 410:97–100.

    Article  PubMed  CAS  Google Scholar 

  • van den Berghe N, Nieuwkoop NJ, Vaandrager AB, de Jonge HR (1991) Asymmetrical distribution of G-proteins among the apical and basolateral membranes of rat enterocytes. Biochem J 278:565–571.

    PubMed  Google Scholar 

  • Wang N, Yan K, Rasenick MM (1990) Tubulin binds specifically to the signal-transducing proteins, Gsα and Giα1. J Biol Chem 265:1239–1242.

    PubMed  CAS  Google Scholar 

  • Wilkie TM, Scherle PA, Strathmann MP, Slepak VZ, Simon MI (1991) Characterization of G-protein α subunits in the Gq class: expression in murine tissues and in stromal and hematopoietic cell lines. Proc Natl Acad Sci USA 88:10049–10053.

    Article  PubMed  CAS  Google Scholar 

  • Worley PF, Baraban JM, Van Dop C, Neer E, Snyder SH (1986) Go, a guanine nucleotide binding protein: immunochemical localization in rat brain resembles distribution of second messenger systems. Proc Natl Acad Sci USA 83:4561–4565.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milligan, G. (1993). Qualitative and Quantitative Characterization of the Distribution of G-Protein α Subunits in Mammals. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics