Skip to main content

Receptor to Effector Signaling Through G-Proteins: βγ Dimers Join α Subunits in the World of Higher Eukaryotes

  • Chapter
Book cover GTPases in Biology II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

Abstract

Heterotrimeric signal transducing G-proteins are a complex and diverse set of highly homologous proteins involved in coupling of a large number of receptors to a variety of effectors (for details of molecular diversity in G-protein subunits and functional correlates see Chap. 11, this volume). It is now clear that in the animal kingdom α subunits of G-proteins are carriers of the signal generated by G-protein-coupled receptors. Affected systems are at least six adenylyl cyclases (ACs), at least three of the type C, phosphatidylinositol (PIP) specific phospholipases (PLCs), two and possibly three types of K+ channels, and voltage-gated Ca2+ channels of the L and N types. Regulation by G-protein α subunits may be of the positive (stimulatory) or negative (inhibitory) type. In in vitro reconstitution assays only subnanomolar concentrations of the various α subunits are needed to measure the desired regulatory activity. But what about βγ dimers, the second product of the activation reaction catalyzed by receptors?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Sambra AB, Jüpmer H, Force T, Freeman MW, Kong XF, Schipani E, Urena P, Richards J, Bonventre JV, Potts JT, Jr, Kronenberg HM, Segre GV (1992) Expression cloning of a common receptor for parathryoid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci USA 89:2732–2736.

    Article  Google Scholar 

  • Amatruda TT, III, Steele DA, Slepak VZ, Simon MI (1991) Gαl6, a G protein α subunit specifically expressed in hematopoietic cells. Proc. Natl Acad Sci USA 88:5587–5591.

    Article  CAS  Google Scholar 

  • Ashkenazi A, Winslow JW, Peralta EG, Peterson GL, Schimerlik MI, Capon DJ, Ramachandran J (1987) An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science 238:672–675.

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi A, Peralta EG, Winslow JW, Ramachandran J, Capon DJ (1989) Functionally distinct G proteins selectively couple different receptors to PI hydrolysis in the same cell. Cell 56:487–493.

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L, Hildebrandt JD, Codina J, Mattera R, Cerione RA, Hildebrandt JD, Sunyer T, Rojas FJ, Caron MG, Lefkowitz RJ, Iyengar R (1985) Structural basis of adenylyl cyclase stimulation and inhibition by distinct guanine nucleotide regulatory proteins. In: Cohen P Houslay MD (eds) Molecular mechanisms of signal transduction. Elsevier/North Holland, Amsterdam, pp 131–182.

    Google Scholar 

  • Birnbaumer L, Brown AM (1987) G protein opening of K+ channels. Nature 327:21–22.

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L, Abramowitz J, Brown AM (1990) Signal transduction by G proteins. Biochim Biophys Acta (Reviews in Biomembranes) 1031:163–224..

    CAS  Google Scholar 

  • Birnbaumer L (1990) G proteins in signal transduction. Annu Rev Pharmacol Toxicol 30:675–705.

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR (1987) Wrong subunit regulates cardiac potassium channels. Nature 325:296–297.

    Article  PubMed  CAS  Google Scholar 

  • Brass LF, Laposata M, Banga HS, Rittenhouse SE (1986) Regulation of the phosphoinositide hydrolysis in thrombin-stimulated platelets by a pertussis toxin-sensitive guanine nucleotide binding protein. Evaluation of its contribution to platelet activation and comparisons with the adenylate cyclase inhibitory protein, Gi J Biol Chem 261:16838–16847.

    CAS  Google Scholar 

  • Brass LF, Manning DR, Williams AG, Woolkalis MJ, Poncz M (1991) Receptor and G protein-mediated responses to thrombin in HEL cells. J Biol Chem 266:958–965.

    PubMed  CAS  Google Scholar 

  • Brass LF, Vassallo Jr, RR, Belmonte E, Ahuja M, Cichowski K, Hoxie JA (1992) Structure and function of the human thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. J Biol Chem 267:13795–13798.

    PubMed  CAS  Google Scholar 

  • Burch RM, Luini A, Axelrod J (1986) Phospholipase A2 and phospholipase C are activated by distinct GTP-binding proteins in response to alpha1-adrenergic stimulation in FRTL-5 cells. Proc Natl Acad Sci USA 83:7201–7205..

    Article  PubMed  CAS  Google Scholar 

  • Camps M, Hou C, Sidiropoulos D, Stock JB, Jakobs KH, Gierschik P (1992a) Stimulation of phospholipase C by guanine-ncleotide-binding protein βγ subunits. Eur J Biochem 206:821–831.

    Article  PubMed  CAS  Google Scholar 

  • Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, Gierschik P (1992b) Isozyme-selective stimulation of phospholipase C-β2 by G protein βγ-subunits. Nature (in press).

    Google Scholar 

  • Chabre O, Conklin BR, Lin HY, Lodish HF, Wilson E, Ives HE, Catanzariti L, Hemmings BA, Bourne HR (1992) A recombinant calcitonin receptor independently stimulates 3′,5′-cyclic adenosine monophosphate and Ca2+/inositol phosphate signaling pathways. Mol Endocrinol 6:551–556.

    Article  PubMed  CAS  Google Scholar 

  • Chiba T, Raffouol K, Yamada T (1987) Divergent stimulatory and inhibitory actions of carbamylcholine on gastric D-cells. J Biol Chem 262:8467–8469.

    PubMed  CAS  Google Scholar 

  • Codina J, Hildebrandt JD, Sekura RD, Birnbaumer M, Bryan J, Manclark CR, Iyengar R, Birnbaumer L (1984) Ns and Ni, the stimulatory and inhibitory regulatory components of adenylyl cyclases. Purification of the human erythrocyte proteins without the use of activating regulatory ligands. J Biol Chem 259:5871–5886.

    PubMed  CAS  Google Scholar 

  • Codina J, Yatani A, Grenet D, Brown AM, Birnbaumer L (1987) The alpha subunit of the GTP binding protein Gk opens atrial potassium channels. Science 236:442–445.

    Article  PubMed  CAS  Google Scholar 

  • Crouch MF, Lapetina EG (1988) A role for Gi in control of thrombin receptor-phospholipase C coupling in human platelets. J Biol Chem 263:3362–3371.

    Google Scholar 

  • Davis JS, West LA, Farese RV (1984) Effects of luteinizing hormone on phosphoinositide metabolism in rat granulosa cells. J Biol Chem 259:15028–15034.

    PubMed  CAS  Google Scholar 

  • Davis JS, Weakland LL, Farese RV, West LA (1987) Lutenizing hormone increases inositol trisphosphate and cytosolic free Ca2+ in isolated bovine luteal cells. J Biol Chem 262:8515–8521.

    PubMed  CAS  Google Scholar 

  • Eason MG, Kurose H, Holt BD, Raymond JR, Liggett SB (1992) Simultaneous coupling of α2-adrenergic receptors to two G-proteins with opposing effects. Subtype selective coupling of α2C10, α2C4 and α2C2 adrenergic receptors to Gi In3 Gs. J Biol Chem 267:15795–15801.

    PubMed  CAS  Google Scholar 

  • Evans T, Fawzi A, Fraser ED, Brown ML, Northup JK (1987) Purification of a beta35 form of the beta-gamma complex common to G-proteins from human placental membranes. J Biol Chem 262:176–181.

    PubMed  CAS  Google Scholar 

  • Fargin A, Reymond JR, Regan JW, Cotecchia S, Lefkowitz RJ, Caron MG (1989) Effector coupling mechanisms of the cloned 5-HT1A receptor. J Biol Chem 264:14949–14852.

    Google Scholar 

  • Federman AD, Conklin BR, Schrader KA, Reed RR, Bourne HR (1992) Hormonal stimulation of adenylyl cyclase through Gi-protein βγ subunits. Nature 356:159–161.

    Article  PubMed  CAS  Google Scholar 

  • Feinstein PG, Schrader KA, Bakalyar HA, Tang W-J, Krupinski J, Gilman AG, Reed RR (1991) Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenylyl cyclase from rat brain. Proc Natl Acad Sci USA 88:10173–10177.

    Article  PubMed  CAS  Google Scholar 

  • Fisher JK, Aronson NN (1992) Characterization of the cDNA and genomic sequence of a G protein γ subunit (γ5). Mol Cell Biol 12:1585–1591.

    PubMed  CAS  Google Scholar 

  • Gao B, Gilman AG (1991) Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc Natl Acad Sci USA 88:10178–10182.

    Article  PubMed  CAS  Google Scholar 

  • Gierschik P, Jakobs KH (1987) Receptor mediated ADP-ribosylation of a phopholipase C-stimulating G protein. FEBS Lett 224:219–223.

    Article  PubMed  CAS  Google Scholar 

  • Gierschik P, Sidiropoulos D, Jalobs KH (1989) Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J Biol Chem 264:21470–21473.

    PubMed  CAS  Google Scholar 

  • Gilman AG (1984) G proteins and dual control of adenylate cyclase. Cell 36:577–579.

    Article  PubMed  CAS  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649.

    Article  PubMed  CAS  Google Scholar 

  • Gollasch M, Haller H, Schultz G, Hescheler J (1991) Thyrotropin releasing hormone induces opposite effects on Ca2+ channel currents in pituitary cells by two pathways. Proc Natl Acad Sci USA 88:10262–10266.

    Article  PubMed  CAS  Google Scholar 

  • Graf R, Mattera R, Codina J, Evans T, Ho Y-K, Estes MK, Birnbaumer L (1992) Studies on the interaction of α subunits of G proteins with βγ dimers. Eur J Biochem (in press).

    Google Scholar 

  • Gudermann T, Birnbaumer M, Birnbaumer L (1992) Evidence for dual coupling of the murine LH receptor to adenylyl cyclase and phosphoinositide breakdown/Ca2+ mobilization. Studies with the cloned murine LH receptor expressed in L cells. J Biol Chem 267:4479–4488.

    PubMed  CAS  Google Scholar 

  • Hescheler J, Rosenthal W, Hinsch K-D, Wulfern M, Trautwein W, Schultz G (1988) Angiotensin II-induced stimulation of voltage-dependent Ca2+ currents in an adrenal cortical cell line. EMBO J 7:619–624.

    PubMed  CAS  Google Scholar 

  • Hildebrandt JD, Sekura RD, Codina J, Iyengar R, Manclark CR, Birnbaumer L (1983) Stimulation and inhibition of adenylyl cyclases is mediated by distinct proteins. Nature 302:706–709.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt JD, Kohnken RE (1990) Hormone inhibition of adenylyl cyclase. J Biol Chem 265:9825–9830.

    PubMed  CAS  Google Scholar 

  • Ishikawa Y, Katsushita S, Chen L, Hanlon NJ, Kawabe J, Honey C (1992) Isolation and characterization of a novel cardiac adenylylcyclase. J Biol Chem 267:13553–13557.

    PubMed  CAS  Google Scholar 

  • Itoh H, Sugimoto T, Kobayashi I, Takahashi K, Katada T, Ui M, Kurachi Y (1991) On the mechanism of basal and agonist-induced activation of the G-protein gated musarinic K+ channel in atrial myocytes of guinea pig heart. J Gen Physiol 98:517–533.

    Article  Google Scholar 

  • Jakobs KH, Aktories K, Schultz G (1983) A nucleotide regulatory site for somatostatin inhibition of adenylate cyclase in S49 lymphoma cells. Nature 303:177–178.

    Article  PubMed  CAS  Google Scholar 

  • Jakobs KH, Bauer S, Watanabe Y (1985) Modulation of adenylate cyclase of human platelets by phorbol ester. Impairment of the hormone-sensitive inhibitory pathway. Eur J Biochem 151:425–430.

    Article  PubMed  CAS  Google Scholar 

  • Katada T, Gilman AG, Watanabe Y, Bauer S, Jakobs KH (1985) Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem 151:431–437.

    Article  PubMed  CAS  Google Scholar 

  • Katz A, Wu D, Simon MI (1992) βγ Subunits of the heterotrimeric G protein activate the β2 isoform of phospholipase C. Nature (in press).

    Google Scholar 

  • Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Satoh T (1991) Structure and function of signal-transducing GTP-binding proteins. Ann Rev Biochem 60:349–400.

    Article  PubMed  CAS  Google Scholar 

  • Kerry R, Scrutton MC, Wallis RB (1984) Mammalian platelet adrenoceptors. Br J Pharmacol 81:91–102.

    PubMed  CAS  Google Scholar 

  • Kikuchi A, Kozawa O, Kaibuchi K, Katada T, Ui M, Takai Y (1986) Direct evidence for involvement of a guanine nucleotide-binding protein in chemotactic peptide-stimulated formation of inositol bisphosphate and trisphosphate in differentiated human leukemic (HL-60) cells. Reconstitution with Gi or Go of the plasma membranes ADP-ribosylated by pertussis toxin. J Biol Chem 261:11558–11562.

    PubMed  CAS  Google Scholar 

  • Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE (1989) G protein βτ-subunits activate the cardiac muscarinic K+ channel via phospholipase A2. Nature 337:557–560.

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Hescheler J, Ewel C, Rosenthal W, Schultz G, Wittig B (1991) Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353:43–48.

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Scherübl H, Hescheler J, Scultz GB, Wittig (1992) Different β-subunits determine G protein interaction with transmembrane receptors. Nature 358:424–426.

    Article  PubMed  CAS  Google Scholar 

  • Kleuss C, Scherübl H, Hescheler J, Schultz G, Wittig B (1993) Selectivity in signal transduction determined by γ subunits of heterotrimeric G proteins. Science 259:832–834.

    Article  PubMed  CAS  Google Scholar 

  • Krupinski J, Coussen F, Bakalyar HA, Tang W-J, Feinstein PG, Orth K, Slaughter C, Reed RR, Gilman AG (1989) Adenylyl cyclase amino acid sequence: possible channel-or transporter-like structure. Science 244:1558–1564.

    Article  PubMed  CAS  Google Scholar 

  • Kurachi Y, Ito H, Sugimoto T, Shimizu T, Miki I, Ui M (1989) Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K+ channel. Nature 337:555–557.

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Park D, Wu D, Rhee SG, Simon MI (1992) Members of the Gq alpha subunit gene family activate phospholipase C-beta isozymes. J Biol Chem 267:16044–16047.

    PubMed  CAS  Google Scholar 

  • Levine MA, Smallwood PM, Moen PT, Helman LJ, Ahn TG (1990) Molecular cloning of β3 subunit, a third form of the G protein β-subunit polypeptide. Proc Natl Acad Sci USA 87:2329–2333.

    Article  PubMed  CAS  Google Scholar 

  • Lewis DL, Weight FF, Luini A (1986) A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium current by somatostatin in a pituitary cell line. Proc Natl Acad Sci USA 83:9035–9039.

    Article  PubMed  CAS  Google Scholar 

  • Gierschik P, Stisslinger M, Sidiropolous D, Herrmann E, Jakobs KH (1989) Dual Mg2+ control of formyl peptide receptor-G protein interaction in HL-60 cells. Evidence that the low agonist affinity receptor interacts with and activates the G rotein. Eur J Biochem 183:97–105.

    Article  PubMed  CAS  Google Scholar 

  • Florio VA, Sternweis PC (1989) Mechanism of muscarinic receptor action on Go in reconstituted phospholipid vesicles. J Biol Chem 264:3909–3915.

    PubMed  CAS  Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The βτ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326.

    Article  PubMed  CAS  Google Scholar 

  • Marbach I, Bar-Sinai A, Minich M, Levitzki A (1990) β Subunit copurifies with GppNHp-activated adenylyl cyclase. J Biol Chem 266:999–1004.

    Google Scholar 

  • Northup JK, Smigel MD, Sternweis PC, Gilman AG (1983) The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton (alpha) subunit. J Biol Chem 258:11369–11376.

    PubMed  CAS  Google Scholar 

  • Offermanns S, Schultz G, Rosenthal W (1991) Evidence for opioid receptor-mediated activation of the G proteins Go and Gi2 in membranes of neuroblastoma X glioma (NG108—15) hybrid cells. J Biol Chem 266:3365–3368.

    PubMed  CAS  Google Scholar 

  • Ohta H, Okajima F, Ui M (1985) Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J Biol Chem 260:15771–15780.

    PubMed  CAS  Google Scholar 

  • Okabe K, Yatani A, Evans T, Ho Y-K, Codina J, Birnbaumer L, Brown AM (1990) βγ Dimers of G proteins inhibit muscarinic K+ channels in heart. J Biol Chem 265:12854–12858.

    PubMed  CAS  Google Scholar 

  • Okajima F, Ui M (1984) ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils. A possible role of the toxin substrate in Ca2+-mobilizing biosignaling. J Biol Chem 259:13863–13871.

    PubMed  CAS  Google Scholar 

  • Park D, Jhon DY, Kritz R, Knopf J, SG Rhee (1992) Cloning, expression and Gq-independent activation of phospholipase C-β2. J Biol Chem 267:16048–16055.

    PubMed  CAS  Google Scholar 

  • Premont RT, Chen J, Ma, HW, Ponnapalli M, Iyengar R (1992) Two members of a new subfamily of hormone-stimulated adenylyl cyclases. Proc Natl Acad Sci USA 89 (in press).

    Google Scholar 

  • Pronin AN, Gautham N (1992) Interaction between G protein β and γ subunit types is selective. Proc Natl Acad Sci USA 89:6220–6224.

    Article  PubMed  CAS  Google Scholar 

  • Raymond JR, Albers FJ, Middleton JP, Lefkowitz RJ, Caron MG, Obeid LM, ennis VW (1991) 5-HT1A and histamine H1 receptors in HeLa cells stimulate phosphoinositide hydrolysis and phosphate uptake via distinct G protein pools. J Biol Chem 266:372–379.

    PubMed  CAS  Google Scholar 

  • Reed RR, Bakalyar HA (1990) Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–1406.

    Article  PubMed  Google Scholar 

  • Rhee SG, Choi KD (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 267:12393–12396.

    PubMed  CAS  Google Scholar 

  • Rosenthal W, Hescheler J. HInsch K-D, Spicher K, Trautwein W, Schultz G (1988) Cyclic AMP independent, dual regulation of voltage-dependent Ca2+ currents by LHRH and somastostatin in a pituitatry cell line. EMBO J 7:1627–1633.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Thomas TC, Levine MA, Neer EJ (1992) Specificity of G protein β and γ subunit interactions. J Biol Chem 267:13807–13810.

    PubMed  CAS  Google Scholar 

  • Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–80.8.

    Article  PubMed  CAS  Google Scholar 

  • Simonds WF, Goldsmith PK, Codina J, Unson CG, Spiegel AM (1989) Gi2 mediates α2-adrenergic inhibition of adenylyl cyclase in platelet membranes: in situ identification with Gα C-terminal antibodies. Proc Natl Acad Sci USA 86:7809–7813.

    Article  PubMed  CAS  Google Scholar 

  • Smrcka AV, Helper JR, Brown KO, Sternweis PC (1991) Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251:804–807.

    Article  PubMed  CAS  Google Scholar 

  • Steer ML, Khorana J, Galgoci B (1979) Quantitation and characterization of human platelet alpha-adrenergic receptors using [3H]phentolamine. MO1 Pharmacol 16:719–728.

    CAS  Google Scholar 

  • Strathmann MP, Simon MI (1991) Gα12 and Gα13 subunits define a fourth class of G protein α subunits. Proc Natl Acad Sci USA 88:5582–5586.

    Article  PubMed  CAS  Google Scholar 

  • Suprenant A, Horstman DA, Akbarali H, Limbird LE (1992) A point mutation of the αs-adrenoceptor that blocks coupling to potassium but not calcium currents. Science 257:977–980.

    Article  Google Scholar 

  • Taguchi M, Field JB (1988) Effects of thyroid-stimulating hormone, carbachol, norepinephrine, and adenosine 3′,5′-monophosphate on polyphosphati-dylinositol phosphate hydrolysis in dog thyroid slices. Endocrinology 123:2019–2026.

    Article  PubMed  CAS  Google Scholar 

  • Tang WJ, Gilman AG (1991) Type specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Taylor SJ, Chae HZ, Rhee SG, Exton JH (1991) Activation of the β1 isozyme of phospholipase C by α subunits of the Gq class of G proteins. Nature 350:516–518.

    Article  PubMed  CAS  Google Scholar 

  • Toro M-J, Montoya E, Birnbaumer L (1987) Inhibitory regulation of adenylyl cyclases. Evidence against a role for beta/gamma complexes of G proteins as mediators of Grdependent hormonal effects. Mol Endocrinol 1:669–676.

    Article  PubMed  CAS  Google Scholar 

  • Vallar L, Muca C, Magni M, Albert P, Bunzow J, Meldolesi J, Civelli O (1990) Differential coupling of dopaminergic D2 receprotrs expressed in different cell types. Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in Ltkfibroblasts, hyperpolarization, and cytosolic free Ca2+ concentration decrease in GH4C1 Cells. J Biol Chem 265:10320–10326.

    PubMed  CAS  Google Scholar 

  • VanSande J, Raspe E, Perret J, Lejeune C, Manhaut C, Vassart G, Dumont JE (1990) Thyrotropin activates both the cAMP and the PIP2 cascade in CHO cells expressing the human cDNA of the TSH receptor. Mol Cell Endo 74:R1–R6.

    Article  CAS  Google Scholar 

  • von Weizsäcker E, Strathmann MP, Simon MI (1992) Diversity among the beta subunits of heterotrimeric GTP-binding proteins: characterization of a novel beta-subunit cDNA. Biochem Biophys Res Commun 183:350–356.

    Article  Google Scholar 

  • Vu T-KH, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068.

    Article  PubMed  CAS  Google Scholar 

  • Wilkie TM, Scherle PA, Strathmann MP, Slepak VZ, Simon MI (1991) Characterization of G-protein α subunits in the Gq class: expression in murine tissues and in stromal and hematopoietic cell lines. Proc Natl Acad Sci USA 88:10049–10053.

    Article  PubMed  CAS  Google Scholar 

  • Wong UH, Federman A, Pace AM, Zachary I, Evans T, Pouysségur, Bourne HR (1991) Mutant α subunits of Gi2 inhibit cyclic AMP accumulation. Nature 351:63–65.

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Lee CH, Rhee SG, Simon MI (1992) Activation of phospholipase C by the α subunit of the Gq and G11 protein in transfected COS-7 cells. J Biol Chem 267:1811–1817.

    PubMed  CAS  Google Scholar 

  • Yatani A, Codina J, Brown AM, Birnbaumer L (1987b) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein Gk. Science 235:207–211.

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Codina J, Sekura RD, Birnbaumer L, Brown AM (1987b) Reconstitution of somatostatin and muscarinic receptor mediated stimulation of K+ channels by isolated Gk protein in clonal rat anterior pituitary cell membranes. Mol Endocrinol 1:283–289.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M, Cooper DMF (1992) Cloning and expression of a Ca2+-inhibitable adenylyl cyclase from NCB-20 cells. Proc Natl Acad Sci USA 89:6716–6720.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birnbaumer, L. (1993). Receptor to Effector Signaling Through G-Proteins: βγ Dimers Join α Subunits in the World of Higher Eukaryotes. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics