Advertisement

The Role of Radiation in the Stratosphere and its Representation in Models

  • Steven Pawson
Conference paper
  • 73 Downloads
Part of the NATO ASI Series book series (volume 8)

Abstract

The energy balance of the stratosphere is discussed and the role of radiative heating in determining the climatology of the stratosphere is highlighted. Requirements for radiation transfer calculations in the middle atmosphere are discussed. Simple models are used to illustrate the effect of uncertainties in radiative heating calculations on the modelled stratospheric climatology.

Keywords

Radiation Transfer Radiative Heating Middle Atmosphere Radiation Transfer Model Winter Hemisphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews DG, Holton JR, Leovy CB (1987) Middle Atmosphere Dynamics, Academic Press, Orlando, FloridaGoogle Scholar
  2. Barnett J J, Corney M (1985) Middle atmosphere reference model derived from satellite data. Handbook for MAP 16: 47–85Google Scholar
  3. Boville BA, Cheng X (1988) Upper boundary effects in a general circulation model. J. Atmos. Sci. 45: 2591–2606CrossRefGoogle Scholar
  4. Callis LB, Boughner RE, Lambeth JD (1987) The stratosphere: climatologies of radiative heating and cooling rates and the diabatically-diagnosed net circulation fields. J. Geophys. Res. 92: 5585–5607CrossRefGoogle Scholar
  5. Cariolle D, Lasserre-Bigorry A, Royer J-F, Geleyn J-F (1990) A general circulation model simulation of the springtime Antarctic ozone decrease and its impact on mid-latitudes. J. Geophys. Res. 95: 1883–1898CrossRefGoogle Scholar
  6. Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66: 83–109Google Scholar
  7. Ellingson RG, Fouquart Y (1991) The intercomparison of radiation codes used in climate models: an overview. J. Geophys. Res. 96: 8925–8927CrossRefGoogle Scholar
  8. Ellingson RG, Ellis J, Fels SB (1991) The intercomparison of radiation codes used in climate models: long wave results. J. Geophys. Res. 96: 8929–8953CrossRefGoogle Scholar
  9. Fels SB (1979) Simple strategies for inclusion of Voigt effects in infrared cooling calculations. App. Opt. 18: 2634–2637CrossRefGoogle Scholar
  10. Fels SB (1985) Radiative-dynamical interactions in the middle atmosphere. Adv Geophys 28A: 277–300CrossRefGoogle Scholar
  11. Fels SB, Mahlman JD, Schwarzkopf MD, Sinclair RW (1980) Stratospheric sensitivity to perturbations in ozone and carbon dioxide: radiative and dynamical response. J Atmos Sci 37: 2265–2297CrossRefGoogle Scholar
  12. Fels SB, Kiehl JT, Lacis A A, Schwarzkopf MD (1991) Infrared cooling rate calculations in operational general circulation models: comparisons with benchmark computations. J Geophys Res 96: 9105–9120CrossRefGoogle Scholar
  13. Gille JC, Lyjak LV (1986) Radiative heating and cooling rates in the middle atmosphere. J. Atmos. Sci. 43: 2215–2229CrossRefGoogle Scholar
  14. Gray LJ, Blackburn M, Chipperfield MP, Haigh JD, Jackson DR, Shine KP, Thuburn J, Zhong W (1992) First results from a three-dimensional middle atmosphere model. Adv. Space Res. 13: 363–372Google Scholar
  15. Haigh JD (1984) Radiative heating in the lower stratosphere and the distribution of ozone in a two-dimensional model. Q. J. R. Meteorol. Soc. 110: 167–186CrossRefGoogle Scholar
  16. Hitschfeld W, Houghton JT (1961) Radiative transfer in the lower stratosphere due to the 9.6 micron band of ozone. Q. J. R. Meteorol. Soc. 83: 562–577CrossRefGoogle Scholar
  17. Houghton JT (1978) The Physics of Atmospheres Cambridge University PressGoogle Scholar
  18. Kiehl JT, Boville BA (1988) The radiative-dynamical response of a stratospheric-tropospheric general circulation model to changes in ozone. J. Atmos. Sci. 45: 1798–1817CrossRefGoogle Scholar
  19. Kiehl JT, Solomon S (1986) On the radiative balance of the stratosphere J. Atmos. Sci. 43: 1525–1534CrossRefGoogle Scholar
  20. Keating GP, Pitts MC, Chen C (1990) Improved reference models for middle atmospheric ozone. Adv. Space Res. 10:(6)37–(6)49Google Scholar
  21. Manning AJL (1990) Radiative transfer in the middle atmosphere. D. Phil thesis, University of Oxford.Google Scholar
  22. Morcrette J-J (1990) Impact of changes to the radiation transfer parametrizations plus cloud optical properties in the ECMWF model. Mon Weather Rev 118: 847–873CrossRefGoogle Scholar
  23. Morcrette, J-J (1991) Radiation and cloud radiative properties in the European Centre for Medium Range Weather Forecasts forecasting system. J Geophys Res 96: 9121–9132CrossRefGoogle Scholar
  24. Olaguer EP, Yang H, Tung K-K (1992) A reexamination of the radiative balance of the stratosphere. J. Atmos. Sci. 49: 1242–1261Google Scholar
  25. Pawson S (1992) Underestimates of O3 9.6 μm heating rates as a cause of the cold bias in the low tropical stratosphere of GCMs. Ann. Geophysicae 10: 619–624Google Scholar
  26. Pawson S, Harwood RS (1989) Monthly-mean diabatic circulations in the stratosphere. Q J R Meteorol Soc 115: 807–840CrossRefGoogle Scholar
  27. Pawson S, Shine KP (1991) The effect on the modelled middle atmosphere of degrading radiation calculations. Ann Geophysicae 9: 654–660Google Scholar
  28. Pawson S, Langematz U, Meyer A, Strauch P, Leder S, Rose K (1991) A comparison of the climatology of a of a troposphere-stratosphere-mesosphere model with observations. Clim Dyn 5: 161–174CrossRefGoogle Scholar
  29. Ramanathan V, Dickinson RE (1979) The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system. J. Atmos. Sci. 36: 1084–1104Google Scholar
  30. Rind D, Suozzo F, Balachandran NK, Lacis A, Russell G (1988) The GISS global climate-middle atmosphere model. Part I: Model structure and climatology. J. Atmos. Sci. 45: 329–370Google Scholar
  31. Rind D, Suozzo F, Balachandran NK, Prather MJ (1990) Global change and the middle atmosphere. Part I: The doubled C02 climate. J. Atmos. Sci. 47: 475–494CrossRefGoogle Scholar
  32. Rind D, Suozzo F, Balachandran NK (1992) Global change and the middle atmosphere. Part II: The impact of volcanic aerosols J. Clim. 5: 189–208CrossRefGoogle Scholar
  33. Rosenfield JE (1991) A simple parametrization of ozone infrared absorption for atmospheric heating rate calculations. J. Geophys. Res. 96: 9065–9074CrossRefGoogle Scholar
  34. Rosenfield JE, Schoerberl MR, Geller MA (1987) A computation of the stratospheric diabatic circulation using an accurate radiation transfer model. J. Atmos. Sci. 44: 859–876Google Scholar
  35. Shibata K, Chiba M (1990) A simulation of the seasonal variation of the stratospheric circulation with a general circulation model. J. Meteorol. Soc. Jpn. 68: 687–703Google Scholar
  36. Schwarzkopf MD, Fels SB (1991) The simplified exchange method revisited: an accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res. 96: 9075–9096Google Scholar
  37. Shine KP (1987) The middle atmosphere in the absence of dynamical heat fluxes. Q J R Meteorol Soc 113: 605–636CrossRefGoogle Scholar
  38. Shine KP, Rickaby JA (1989) Solar radiative heating due to absorption by ozone. In: Bojkov RD, Fabian P (eds) Ozone in the Atmosphere A. Deepack Publishing, Hampton, VA, 597–600Google Scholar
  39. Strobel DF (1978) Parametrization of the atmospheric heating rate from 15–120 km due to O2 and O3 absorption of solar radiation. J Geophys Res 83: 6225–6230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Steven Pawson
    • 1
  1. 1.Institut für MeteorologieFreie Universität BerlinGermany

Personalised recommendations