The Stratosphere in General Circulation Models

  • Byron A. Boville
Conference paper
Part of the NATO ASI Series book series (volume 8)


A simple discussion of the processes which maintain the mean state of the stratosphere is given in order to demonstrate how the stratosphere might influence the tropospheric circulation. A series of GCM studies which indicate that the strength of the polar night jet is important in determining the planetary wave structures in the troposphere are then summarized. These experiments are used to determine the tropospheric response to stratospheric changes during northern winter, when the largest influence is expected. The climatological response and the time scale on which the response develops has been determined using separate experiments. Finally, problems with the physical parameterizations which are typically encountered when extending tropospheric GCMs to include the full stratosphere and lower mesosphere are summarized.


Gravity Wave Zonal Wind Planetary Wave Lower Stratosphere Meridional Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, D. G., and M. E. Mclntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031–2048.CrossRefGoogle Scholar
  2. Bates, J. R., 1977: Dynamics of stationary ultra-long waves in middle latitudes. Quart. J. Roy. Meteor. Soc., 103, 397–430.CrossRefGoogle Scholar
  3. Boville, B. A., 1984: The influence of the polar night jet on the tropospheric circulation in a GCM. J. Atmos. Sci., 41, 1132–1142.CrossRefGoogle Scholar
  4. Boville, B. A., 1986: Wave-mean flow interactions in a general circulation model of the troposphere and stratosphere. J. Atmos. Sci., 43, 1711–1725.CrossRefGoogle Scholar
  5. Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469–485.CrossRefGoogle Scholar
  6. Boville, B. A., and D. P. Baumhefner, 1990: Simulated forecast error and climate drift resulting from the omission of the upper stratosphere in numerical models. Mon. Wea. Rev., 118, 1517–1530.CrossRefGoogle Scholar
  7. Boville, B. A., and X. Cheng, 1988: Upper boundary effects in a general circulation model. J. Atmos. Sci., 45, 2592–2606.CrossRefGoogle Scholar
  8. Cariolle, D., and M. Deque, 1986: Southern Hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J. Geophys. Res., 91, 10825–10846.CrossRefGoogle Scholar
  9. Dickinson, R. E., 1984: Infrared radiative cooling in the mesosphere and lower thermosphere. J. Atmos. Sci., 46, 995–1008.Google Scholar
  10. Edmon, H. J., B. J. Hoskins and M. E. Mclntyre, 1980: Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 31, 2600–2616.CrossRefGoogle Scholar
  11. Fels, S. B., 1985: Radiative-dynamical interactions in the middle atmosphere. Issues in Atmospheric and Oceanic Modeling, Part A, Climate Dynamics., S. Manabe, Ed., Vol. 28, Advances in Geophysics, 277–300.CrossRefGoogle Scholar
  12. Fleming, E. L., S. Chandra, M. R. Schoeberl and J. J. Barnett, 1988: Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0-120 km.. NASA Tech. Memorandum TM- 100697, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland, NTIS PB88-168240/AS, 85 pp.Google Scholar
  13. Garcia, R. R., and S. Solomon, 1985: The effect of breaking gravity waves on the dynamical and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90, 3850–3868.CrossRefGoogle Scholar
  14. Geller, M. A., and J. C. Alpert, 1980: Planetary wave coupling between the troposphere and the middle atmosphere as a possible sun-weather mechanism., J. Atmos. Sci., 37, 1197–1215.CrossRefGoogle Scholar
  15. Hansen, J. G., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy and L. Travis, 1983: Efficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev., 111, 609–662.CrossRefGoogle Scholar
  16. Kiehl, J. T., and B. P. Briegleb, 1991: A new parameterization of the absorptance due to the 15-μm band system of carbon dioxide. J. Geophys. Res., 96, 9013–9019.CrossRefGoogle Scholar
  17. Kodera, K., 1992: Influence of the stratospheric circulation change on the troposphere in northern hemisphere winter. The role of the stratosphere in global change., M. L. Chanin and M. A. Geller, Eds., Vol. this volume, NATO ASI Series C: Mathematical and Physical Sciences.Google Scholar
  18. Kodera, K., M. Chiba, K. Yamazaki and K. Shiba, 1991: A possible influence of the polar night stratospheric jet on the subtropical tropospheric jet., J. Meteor. Soc. Japan, 69, 715–721.Google Scholar
  19. Lindzen, R. S., 1981: Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res., 86, 9701–9714.CrossRefGoogle Scholar
  20. Mahlman, J. D., and L. J. Umscheid, 1987: Comprehensive modeling of the middle atmosphere: The influence of resolution. Transport Processes in the Middle Atmosphere, G. Visconti and R. Garcia, Eds., D. Reidel, Hingham, Mass., 251–266.Google Scholar
  21. Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter northern hemisphere., J. Atmos. Sci., 27, 871–883.CrossRefGoogle Scholar
  22. McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 1775–1800.CrossRefGoogle Scholar
  23. Palmer, T. N., G. J. Shutts and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039.CrossRefGoogle Scholar
  24. Ramanathan, V., and R. E. Dickinson, 1979: The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earthtroposphere system. J. Atmos. Sci., 36, 1084–1104.Google Scholar
  25. Rind, D., R. Suozzo, N. K. Balachandran, A. Lacis and G. Russell, 1988: The GISS global climate—middle atmosphere model. Part I: Model structure and climatology. J. Atmos. Sci., 45, 329–370.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Byron A. Boville
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations