Advertisement

Processes Associated with Stratospheric Ozone Decrease: Homogeneous Chemistry

  • Eldon E. Ferguson
Part of the NATO ASI Series book series (volume 8)

Abstract

The role of homogeneous (gas-phase) chemical reactions in controlling the stratospheric ozone concentration is briefly reviewed. An outline of definitions, conventions, and data sources is followed by a specific discussion of the most important ozone destroying reactions. The catalytic HOx, NOx, and CℓOx cycles are described.

Keywords

Ozone Hole Ozone Loss Ozone Destruction Stratospheric Water Vapor Polar Stratospheric Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albritton DL, Fehsenfeld FC, Tuck AF (1990) Instrumental requirements for global atmospheric chemistry, Science 250. 75CrossRefGoogle Scholar
  2. Brasseur G, Solomon S (1986) Aeronomy of the middle atmosphere, D. Reidel, Dordrecht Boston Lancaster Tokyo 2nd Ed.Google Scholar
  3. Chapman S (1930) A theory of upper atmospheric ozone, Mem Roy Meteorol Soc 3, 103Google Scholar
  4. CODATA (1980) J Phys Chem Ref Data 9, 295CrossRefGoogle Scholar
  5. Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content, Quart J Roy Meteorol Soc 96, 320CrossRefGoogle Scholar
  6. Crutzen PJ, Müller R, Brühl C, Peter T (1992) On the potential importance of the gas phase reaction CH3 O2 + CℓO → CℓOO + CH3 O2 and the heterogeneous reaction HOCℓ + HCℓ H2O + O2 in “Ozone Hole” chemistry, Geophys Res Lett 19, 1113CrossRefGoogle Scholar
  7. Dlugokencky EJ, Ravishankara AR (1992) Laboratory measurements of direct ozone loss on ice and doped-ice surfaces, Geophys Res Lett 19, 41CrossRefGoogle Scholar
  8. Ferguson EE (1991) Laboratory measurements of relevant middle atmosphere reaction rate constants. In: L’Atmosphere moyenne et les observations spatiales, Cèpadués-éditions, Toulouse, 355Google Scholar
  9. Hampson J (1965) Chemiluminescent emissions observed in the stratosphere and mesosphere. In: Les Problèmes Meteorologiques de la Stratosphere et de la Mesosphere, CNES, Presses Universitaires de France, 393Google Scholar
  10. Hampson J (1964, 1966 ) Photochemical behaviour of the ozone layer, Canadian Armament Research and Development Establishment (CARDE) Technical Note 1627, 11–18, ibid (1966) TN 1738, 266–267Google Scholar
  11. Hanson DR, Ravishankara AR (1992) Investigation of the reactive and nonreactive processes involving CℓONO2 and HCℓ on water and nitric acid doped ice, J Phys Chem 96 2682CrossRefGoogle Scholar
  12. Hofmann DJ, Solomon S (1989) Ozone destruction through heterogeneous chemistry following the eruption of El Chichon, J Geophys Res 94, 5029CrossRefGoogle Scholar
  13. Johnston HS (1971) Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust, Science 173. 517CrossRefGoogle Scholar
  14. Letexier H (1991) Chemie homogène des constituants neutres en phase gazeuse dans 1’atmosphère moyene. In: L’Atmosphere moyenne et les observations spatiales, Cèpadués-éditions, Toulouse, 177Google Scholar
  15. McElroy MB, Salawitch RJ, Minschwaner K (1992) The changing stratosphere, Planet Space Sci 40, 373CrossRefGoogle Scholar
  16. McFarland M, Kaye J (1992) Chlorofluorocarbons and ozone, Photochemistry and Photobiology 55, 911CrossRefGoogle Scholar
  17. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoro- methanes: Chlorine atom catalyzed destruction of ozone, Nature 249, 810CrossRefGoogle Scholar
  18. NASA Panel for Data Evaluation (1992) Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation Number 10 JPL Publication 92–20Google Scholar
  19. Solomon S (1990) Progress towards a quantitative understanding of Antarctic ozone depletion, Nature 347. 347CrossRefGoogle Scholar
  20. Tuck AF (1990) The current status of stratospheric ozone. In: Energy and the Environment, ed. Tuck AF. 81, CambridgeGoogle Scholar
  21. WMO/UNEP/NASA/NOAA/UKDOE Scientific assessment of ozone depletion: 1991Google Scholar
  22. Wofsy, SC, McElroy MB, Yung YL (1975) The chemistry of atmospheric bromine, Geophys Res Lett 2, 215CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Eldon E. Ferguson
    • 1
  1. 1.Climate Monitoring and Diagnostics LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations