Skip to main content

Implications of Increased Solar UVB for Aquatic Ecosystems

  • Conference paper
The Role of the Stratosphere in Global Change

Part of the book series: NATO ASI Series ((ASII,volume 8))

  • 96 Accesses

Abstract

There is strong evidence that marine organisms in the upper layers of the sea are influenced by increased ultraviolet radiation resulting from declines in the thickness of stratospheric ozone. Early evidence supporting this hypothesis included the fact that wavelengths of potentially damaging ultraviolet radiation can penetrate to ecologically significant depths and laboratory findings that many marine organisms are extremely sensitive to this radiation. Laboratory results within the past few years have provided significantly improved estimates of the biological weighting function for damage to phytoplankton by UV radiation, and investigated possible protective and repair mechanisms in these organisms. Recent field work, making use of the Antarctic ozone hole to provide variable UVB flux on a natural phytoplankton community, has provided the first conclusive evidence for a direct ozone-related effect on an aquatic system giving further evidence of the sensitivity of marine organisms to UVB. Much recent work has been motivated by the large springtime depletion of stratospheric O 3 over the Antarctic which has also led to increased accuracy in atmospheric models necessary for the quantitative computation of UV fluence at high latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. G., D. W. Toohey, and W. H. Brune, Free Radicals Within the Antarctic Vortex: The Role of CFCs in Antarctic Ozone Loss, Science, 251, 39–46, 1991.

    Article  Google Scholar 

  • Bidigare, R. R., M. E. Ondrusek, and S.-H. Kang, Measurements of photosynthesic and UVB blocker pigments during the Icecolors’90 expedition, Antarct. J. U. S., 1992. (submitted).

    Google Scholar 

  • Buhlmann, B., R Bossard, and U. Uehlinger, The influence of longwave ultraviolet radiation (u.V.-A) on the photosynthetic activity (14C-assimilation) of phytoplankton, J. Plankton Res., 9 (5), 935–943, 1987.

    Article  Google Scholar 

  • Caldwell, M. M., Solar ultraviolet radiation as an ecological factor for alpine plants, Ecol. Monogr., 38 (3), 243–268, 1968.

    Article  Google Scholar 

  • Caldwell, M. M., L. B. Camp, C. W. Warner, and S. D. Flint, Action spectra and their key role in assessing biological consequences of solar UV-B radiation change, in Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life, edited by R. C. Worrest, and M. M. Caldwell, p. 87–111, Springer- Verlag, Berlin, 1986.

    Chapter  Google Scholar 

  • Calkins, J., and T. Thordardottir, The ecological significance of solar UV radiation on aquatic organisms, Nature, 283, 563–566, 1980.

    Article  Google Scholar 

  • Carreto, J. I., M. O. Carignan, G. Daleo, and S. G. De Marco, Occurrence of mycosporine-like amino acids in the redtide dinoflagellate Alexandrium excavatum - UV photoprotective compounds? J. Plankton Res., 12, 909–921, 1990.

    Article  Google Scholar 

  • Chalker, B. E., and W. C. Dunlap, UV-B and UV-A light absorbing compounds in marine organisms, in Response of Marine Phytoplanktion to Natural Variations in UV-B Flux: Proceedings of a Workshop, Scripps Institution of Oceanography, La Jolla, CA, April 5,1990, edited by B. G. Mitchell, O. Holm-Hansen, and I. Sobolev, p. Appendix J, Chemical manufacturers Association, Washington, D.C., 1990.

    Google Scholar 

  • Cullen, J. J., and M. R Lesser, Inhibition of photosynthesis by ultraviolet radiation as a function of dose and dosage rate - results for a marine diatom, Marine Biology, 111(2)9 183–190, 1991.

    Google Scholar 

  • Cullen, J. J., and M. R. Lewis, The kinetics of algal photoadaptation in the con-text of vertical mixing, J. Plankton Res., 10 (5), 1039–1063, 1988.

    Article  Google Scholar 

  • Cullen, J. J., P. J. Neale, and M. P. Lesser, Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation, Science, 258, 646–650, 1992.

    Article  Google Scholar 

  • Damkaer, D. M., and D. B. Dey, UV damage and photoreactivation potentials of larval shrimp, Pandalus platyceros, and adult euphausiids Thysanoessa raschii, Oecologia, 60, 169–175, 1983.

    Article  Google Scholar 

  • Dohler, G., Effect of UV-B radiation on the marine diatoms Lauderia annidata and Thalassiosira rotula grown in different salinities, Mar. Biol., 83, 247–253, 1984.

    Article  Google Scholar 

  • Dohler, G., Effect of UV-B radiation (290-320nm) on the nitrogen metabolism of several marine diatoms, Journal Plant Physiol, 118, 391–400, 1985.

    Google Scholar 

  • Dunlap, W. C., B. E. Chalker, and J. K. Oliver, Bathymetric adaptations of reef- building corals at Davies Reef, Great Barrier Reef, Australia - EQ. UV-B absorbing compounds, J. Exp. Mar. Bio. Ecol., 104, 239–248, 1986.

    Article  Google Scholar 

  • El-Sayed, S. Z., F. C. Stephens, R. R. Bidigare, and M. E. Ondrusek, Effect of Ultraviolet radiation on antarctic marine phytoplankton, in Antarctic Ecosystems; Ecological change & conservation, edited by K. R. Kerry, and G. Hempel, Springer Verlag, 1990.

    Google Scholar 

  • Green, A. E. S., G. B. Findley, Jr., K. F. Klenk, W. M. Wilson, and T. Mo, The ultraviolet dose dependence of non-melanoma skin cancer incidence, J. Photochem. Photobiol. B: Biol., 24, 353–362, 1976.

    Article  Google Scholar 

  • Häder, D.-R, Effects of UV-B on motility and photoorientation in the cyanobacterium, Phormiduim uncinatum, Arch. Microbiol., 140, 34–39, 1984.

    Article  Google Scholar 

  • Häder, D.-P, Effects of UV-B on motility and photobehavior in the green flagellate, Euglena gracilis, Arch. Microbiol., 141, 159–163, 1985.

    Article  Google Scholar 

  • Häder, D.-P, Effects of solar and artificial UV irradiation on motility and photo- taxis in the flagellate, Euglena gracilis, J. Photochem. Photobiol. Bt’Biol, 44, 651–656, 1986.

    Article  Google Scholar 

  • Häder, D.-P., Polarotaxis, gravitaxis and vertical phototaxis in the green flagellate, Euglena gracilis, Arch Microbiol, 147, 179–183, 1987.

    Google Scholar 

  • Helbling, E. W., V. Villafane, M. Ferrario, and O. Holm-Hansen, Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species, Mar. Ecol. Prog. Ser 80, 89–100, 1992.

    Article  Google Scholar 

  • Hirosawa, T., and S. Miyachi, Inactivation of hill reaction by long-wavelength ultraviolet radiation (UV-a) and its photoreactivation by visible light in the cyanobacterium, anacystis nidulans, Arch. Microbiol, 135, 98–102, 1983.

    Article  Google Scholar 

  • Holm-Hansen, O., UV radiation in Antarctic waters: effect on rates of primary production, in Response of Marine Phytoplanktion to Natural Variations in UV-B Flux: Proceedings of a Workshop, Scripps Institution of Oceanography, La Jolla, CA, April 5,1990, edited by B. G. Mitchell, O. Holm-Hansen, and I. Sobolev, p. Appendix G, Chemical manufacturers Association, Washington, D.C., 1990.

    Google Scholar 

  • Holm-Hansen, O., and E. W. Helbling, Polyethylene Bags and Solar Ultraviolet Radiation, Science, 1993. (in press).

    Google Scholar 

  • Jerlov, N. G., Ultraviolet radiation in the sea, Nature, 166, 111, 1950.

    Article  Google Scholar 

  • Jokiel, P. L., and R. H. York, Jr, Importance of ultraviolet radiation in photoinhibition of microalgal growth, Limnol. Oceanogr., 29 (1), 192–199, 1984.

    Article  Google Scholar 

  • Jokiel, P. L., and R. H. York Jr, Solar ultraviolet photobiology of the reef coral pocillopora damicornis and symbiotic zooxanthellae, Bull Mar Sci, 32, 301–315, 1982.

    Google Scholar 

  • Karentz, D., Ecological considerations of the Antarctic ozone depletion, Antarctic Science, 3 (1), 3–11, 1991.

    Article  Google Scholar 

  • Karentz, D., F. S. McEuen, M. C. Land, and W. C. Dunlap, Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Portential protection from ultraviolet exposure, Mar. Biol., 108, 157–166, 1991a.

    Article  Google Scholar 

  • Kaupp, S. E., and J. R. Hunter, Photorepair in larval anchovy, Engraulis mordax, J. Photochem. Photobiol. B: Biol, 33, 253–256, 1981.

    Article  Google Scholar 

  • Lenoble, J., L’absorption du rayonnement ultraviolet par les ions présents dans la mer, Revue d’Optique, 35 (10), 526–531, 1956.

    Google Scholar 

  • Lewis, M. R., J. J. Cullen, and T. Piatt, Relationships between vertical mixing and photoadaptation of phytoplankton: similarity criteria, Mar. Ecol. Prog. Ser, 15, 141–149, 1984.

    Article  Google Scholar 

  • Lubin, D., and J. E. Frederick, Column Ozone Measurements From Palmer Station, Antarctica: Variations During the Austral Springs of 1988 and 1989, J. Geophys. Res., 95(D9), 13,883–13, 889, 1990.

    Google Scholar 

  • Lubin, D., and J. E. Frederick, The ultraviolet radiation environment of the Antarctic peninsula: The roles of ozone and cloud cover, J. Appl. Meteorol., 30, 478–493, 1991.

    Article  Google Scholar 

  • Lubin, D., B. G. Mitchell, J. E. Frederick, A. D. Alberts, C. R. Booth, T. Lucas, and D. Neuschuler, A contribution toward understanding the biospherical sig-nificance of antarctic ozone depletion, J. Geophys. Res., 97 (D8), 7817–7828, 1992.

    Google Scholar 

  • Madronich, S., and C. Granier, Impact of recent total ozone changes on tropospheric ozone photodissociation, hydroxyl radicals, and methane trends, Geophys. Res. Lett., 19, 465–467, 1992.

    Article  Google Scholar 

  • Mitchell, B. G., Action spectra of ultraviolet photoinhibition of antarctic phyto-plankton and a model of spectral diffuse attenuation coefficients, in Response of Marine Phytoplanktion to Natural Variations in UV-B Flux: Proceedings of a Workshop, Scripps Institution of Oceanography, La Jolla, CA, April 5,1990, edited by B. G. Mitchell, O. Holm-Hansen, and I. Sobolev, p. Appendix H, Chemical manufacturers Association, Washington, D.C., 1990.

    Google Scholar 

  • D. S. Nachtwey, and M. M. Caldwell (Eds.)., Impacts of climatic change on the bioshpere. Climatic Impact Assessment Program Monogr. 5, Part 1. Ultraviolet radiation effects. PB247 724, Department of Transportation, Washington, D.C., 1975. 647 pp.

    Google Scholar 

  • National Academy of Science and National Research Council, Stratospheric Ozone Depletion by halocarbons: Chemistry and Transport. Committte on Impacts of Straospheric Change, National Academy Press, Washington, D.C., 1979.

    Google Scholar 

  • National Academy of Science and National Research Council, Causes and Effects of Stratospheric Ozone Reduction: an Update, committee on chemistry and physics of ozone depletion and the Commmitte on Biological effects of increased solar ultraviolet radiation. National Academy Press, Washington, D.C., 1982.

    Google Scholar 

  • National Academy of Science and National Research Council, Causes and effects of stratospheric ozone reduction: update 1983, 254 pp., Committee on causes and effects of changes in stratospheric ozone, National Academy Press, Washington, D.C., 1984.

    Google Scholar 

  • National Oceanic and Atmospheric Administration, Stratospheric ozone: The state of the science and NOAA’s current and future research, 197 pp., National Oceanic and Atmospheric Administration, Washington, D.C., 1987.

    Google Scholar 

  • Prézelin, B. B., and R. C. Smith, Response: Polyethylene Bags and Solar Ultra-violet Radiation, Science, 1993. (in press).

    Google Scholar 

  • Prézelin, B. B., M. Putt, and H. E. Glover, Diurnal patterns in photosynthetic capacity and depth-dependent photosynthesis-irradiance relationships in Synechococus spp. and larger phytoplankton in three water masses in the Northwest Atlantic Ocean, Mar. Biol., 91, 205–217, 1986.

    Article  Google Scholar 

  • Prézelin, B. B., N. P. Boucher, and R. C. Smith, Daytime kinetics of UVA and UYB inhibition of photosynthetic activity in Antarctic surface waters, Current Topics in Plant Physiology: an American Society of Plant Physiologist Series., 1992. Presented at Special Symposium: Photosynthetic Responses to the Environment; IXth International Congress on Photosynthesis, Kona, Hawaii, Aug. 24–27, 1992 (Accepted).

    Google Scholar 

  • Rundel, R. D., Action spectra and estimation of biologically effective uv radiation, Physiologia Plantarum, 58, 360–366, 1983.

    Article  Google Scholar 

  • Rundel, R. D., and D. S. Nachtwey, Skin cancer and ultraviolet radiation, J. Photochem. Photobiol. B: Biol., 28, 345–356, 1978.

    Article  Google Scholar 

  • Schoeberl, M. R., and D. L. Hartmann, The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions, Science, 251, 46–52, 1991.

    Article  Google Scholar 

  • Sivalingham, P. M., T. Ikawa, Y. Yokohama, and K. Nisizawa, Distribution of a 334 UV-absorbing substance in algae, with special regard of its possible physiological roles, Botanica Marina, 17, 23–29, 1974.

    Article  Google Scholar 

  • Smith, R. C., Ozone, middle ultraviolet radiation and the aquatic environment, J. Photochem. Photobiol. B: Biol., 50 (4), 459–468, 1989.

    Article  Google Scholar 

  • Smith, R. C., and K. S. Baker, Penetration of UV-B and biologically effective doserates in natural waters, J. Photochem. Photobiol. B: Biol., 29, 311–323, 1979.

    Article  Google Scholar 

  • Smith, R. C., and K. S. Baker, Stratospheric ozone, middle ultraviolet radiation and carbon-14 measurements of marine productivity, Science, 208 (4), 592–593, 1980.

    Article  Google Scholar 

  • Smith, R. C., and K. S. Baker, Optical properties of the clearest natural waters (200–800 nm), Appl. Opt., 20, 177–184, 1981.

    Article  Google Scholar 

  • Smith, R. C., and K. S. Baker, Stratospheric ozone, middle ultraviolet radiation and phytoplankton productivity, Oceanography, 2 (2), 4–10, 1989.

    Google Scholar 

  • Smith, R. C., Z. Wan, and K. S. Baker, Ozone depletion in Antarctica: modeling its effect on solar uv irradiance under clear-sky conditions, J. Geophys. Res., 97 (C5), 7383–7397, 1992a.

    Article  Google Scholar 

  • Smith, R. C., et al., Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters, Science, 255 (5047), 952–959, 1992b.

    Article  Google Scholar 

  • Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27 (12), 2502–2509, 1988.

    Article  Google Scholar 

  • Stamnes, K., J. Slusser, M. Bowen, C. Booth, and T. Lucas, Biologically effective ultraviolet radiation, total ozone abundance, and cloud optical depth at McMurdo station, Antarctica September 15 1988 through april 15 1989, Geophys. Res. Let., 77 (12), 2181–2184, 1990.

    Article  Google Scholar 

  • Steemann Nielsen, E., On the comlication in marine productivity work due to the influence of ultraviolet light, J. Cons. Int. Explor. Mer., 29, 130–135, 1964.

    Google Scholar 

  • Tsay, S.-C., and K. Stamnes, Ultraviolet radiation in the Arctic: The impact of potential ozone depletions and cloud effects, J. Geophys. Res., 97 (D8), 7829–7840, 1992.

    Google Scholar 

  • United Nations Environment Programme, Environmental Effects Panel Report, United Nations Environment Programme, Nairobi, Kenya, 1989.

    Google Scholar 

  • United Nations Environment Programme, Environmental Effects of ozone depletion: 1991 update, United Nations Environment Programme, Nairobi, Kenya, 1991.

    Google Scholar 

  • Vernet, M., UV radiation in antarctic waters: response of phytoplankton pigments, in Response of Marine Phytoplanktion to Natural Variations in UV-B Flux: Proceedings of a Workshop, Scripps Institution of Oceanography, La Jolla, CA, April 5, 1990, edited by B. G. Mitchell, O. Holm-Hansen, and I. Sobolev, p. Appendix I, Chemical manufacturers Association, Washington, D.C., 1990.

    Google Scholar 

  • Voytek, M. A., Addressing the biological effects of decreased ozone on the Antarctic environment, AMBIO, 19 (2), 52–61, 1990.

    Google Scholar 

  • Watson, R., Ozone Trends Panel, Executive Summary. NASA, Washington, D.C., 1988.

    Google Scholar 

  • Worrest, R. C., Review of literature concerning the impact of UV-B radiation upon marine organisms, in The Role of Scalar Ultraviolet Radiation in Marine Ecosystems, edited by J. Calkins, p. 429–457, Plenum Press, New York, 1982.

    Google Scholar 

  • Worrest, R. C., Impact of solar ultraviolet-B radiation (290–320nm) upon marine microalgae, Physiol Plant., 58, 428–434, 1983.

    Article  Google Scholar 

  • Worrest, R. C., Impact of solar ultraviolet-B radiation (290–320nm) upon marine microalgae, Physiol Plant., 58, 428–434, 1983.

    Article  Google Scholar 

  • Worrest, R. C., The effect of solar UV-B radiation on aquatic systems: An overview, in Effects of Changes in Stratospheric Ozone and Global Climate, Overview, edited by J. G. Titus, p. 175–191, US Environmental Protection Agency and United Nations Environmental Program 1, 1986.

    Google Scholar 

  • Worrest, R. C., H. Van Dyke, and B. E. Thomson, Impact of enhanced simulated solar ultraviolet radiation upon a marine community, J. Photochem. Photobiol. B: Biol, 17, 471–478, 1978.

    Google Scholar 

  • Worrest, R. C., D. L. Brooker, and H. Van Dyke, Results of a primary productivity study as affected by the type of glass in the culture bottle, Limnol. Oceanogr., 25, 360–364, 1980.

    Article  Google Scholar 

  • Worrest, R. C., K. U. Wolniakowski, J. D. Scott, D. L. Brooks, B. E. Thomson, and H. Van Dyke, Sensitivity of marine phytoplankton to UV-B radiation: impact upon a model ecosystem, J. Photochem. Photobiol. B: Biol., 33, 223–227, 1981a.

    Article  Google Scholar 

  • Worrest, R. C., B. E. Thomson, and H. Van Dyke, Impact of UV-B radiation upon estuarine microcosms, J. Photochem. Photobiol. B: Biol., 33, 861–867, 1981b.

    Article  Google Scholar 

  • Yentsch, C. S., and C. M. Yentsch, The attenuation of light by marine phytoplankton with specific reference to the absorption of near-UV radiation, in The Role of Scalar Ultraviolet Radiation in Marine Ecosystems, edited by J. Calkins, p. 691–700, Plenum Press, New York, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith, R.C. (1993). Implications of Increased Solar UVB for Aquatic Ecosystems. In: Chanin, ML. (eds) The Role of the Stratosphere in Global Change. NATO ASI Series, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78306-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78306-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78308-1

  • Online ISBN: 978-3-642-78306-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics