Monitoring Stratospheric Ozone From Space

  • Richard S. Stolarski
Part of the NATO ASI Series book series (volume 8)


Satellites have allowed us to measure the global distribution of the atmosphere’s ozone content on a daily basis. This lecture describes how this data can be used to determine ozone trends, emphasizing some of the difficulties which must be overcome to determine an accurate trend from satellite data. The experience gained from nearly 14 years of TOMS data and 11 years of SBUV data have shown that accurate trends can be obtained if special attention is given to the problem of calibration drift.


Total Ozone Solar Zenith Angle Solar Flux Total Ozone Mapping Spectrometer Beta Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bass AM, Paur RJ (1985) The ultraviolet cross-sections of ozone: I. The measurements. In: Zerefos CS, Ghazi A (eds) Atmospheric Ozone, D Reidel, Hingham, Massachusetts USA pp 606–610CrossRefGoogle Scholar
  2. Fleig AJ, Bhartia PK, Wellemeyer CG, Silberstein DS (1986) Seven years of total ozone from the TOMS instrument-a report on data quality. Geophys Res Lett 13: 1355–1358CrossRefGoogle Scholar
  3. Guimaeraes P, McPeters R (eds) (1990) TOMS gridded ozone data 1978–1988. NASA CDROM #USA_NASA_UARP_OPT_001, National Space Science Data Center, Greenbelt Maryland USAGoogle Scholar
  4. Guimaeraes P, McPeters R (eds) (1991) TOMS ozone image data 1978–1991. NASA CDROM #USA_NASA_UARP_OPT_002, National Space Science Data Center, Greenbelt Maryland USAGoogle Scholar
  5. Heath D, Krueger AJ, Park H (1978) The solar backscatter ultraviolet (SBUV) and total ozone mapping spectrometer (TOMS) experiment. In: Madrid CR (ed) The Nimbus 7 user’s guide. NASA Goddard Space Flight Center, Greenbelt Maryland USA, pp 175–211Google Scholar
  6. Herman JR, Hudson R, McPeters R, Stolarski R, Ahmad Z, Gu X-Y, Taylor S, Wellemeyer C (1991) A new self-calibration method applied to TOMS and SBUV backscattered ultraviolet data to determine long-term global ozone change. J Geophys Res 96: 7531–7546CrossRefGoogle Scholar
  7. Klenk KF, Bhartia PK, Fleig AJ, Kaveeshwar VG, McPeters RD, Smith PM (1982) Total ozone determination from the backscattered ultraviolet ( BUV) experiment. J Appl Meteorol 21: 1672–1684Google Scholar
  8. Komhyr WD, Grass RD, Leonard RK (1989) Dobson spectrophotometer 83: A standard for total ozone measurements, 1962–1987. J Geophys Res 94: 9847–9861CrossRefGoogle Scholar
  9. Larko D, McPeters R (eds) (1992) TOMS ozone data 1989–1991. NASA CDROM #US A_N AS A U ARP_OPT_003, National Space Science Data Center, Greenbelt Maryland USAGoogle Scholar
  10. McPeters R, Komhyr WD (1991) Long term changes in the total ozone mapping spectrometer relative to world primary standard Dobson spectrometer 83. J Geophys Res 96: 2987–2993CrossRefGoogle Scholar
  11. Newman P, Stolarski R, Schoeberl M, McPeters R, Krueger A (1991) The 1990 Antarctic ozone hole as observed by TOMS. Geophys Res Lett 18: 661–664CrossRefGoogle Scholar
  12. Stolarski RS, Bloomfield P, McPeters RD, Herman JR (1991) Total ozone trends deduced from Nimbus 7 TOMS data. Geophys Res Lett 18: 1015–1018CrossRefGoogle Scholar
  13. Stolarski R, Bojkov R, Bishop L, Zerefos C, Staehelin J, Zawodny J (1992) Measured trends in stratospheric ozone. Science 256: 342–349CrossRefGoogle Scholar
  14. Vigroux E (1953) Contribution à l’étude experimental de l’absorption de l’ozone. Ann Phys 8: 709Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Richard S. Stolarski
    • 1
  1. 1.NASA/Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations