Long Term Trend in the Middle Atmosphere Temperature

  • Marie-Lise Chanin
Conference paper
Part of the NATO ASI Series book series (volume 8)


The middle atmosphere is the place where the largest changes of anthropogenic origin have been observed in the last decades. The development of the Antarctic Ozone hole is the best known of such changes, but it is shown in this review that large changes are observed in the temperature, partly under the influence of the ozone depletion, and partly as a consequence of the increase in the concentration of greenhouse gases, mainly CO2, CH4 and H2O. The temperature changes are compared with what is expected from the measured changes in atmospheric composition using different models. In both the stratosphere and the mesosphere, the temperature has decreased faster than predicted by any model. The fact that whereas the temperature is increasing in the troposphere, a cooling is already observed just above the tropopause, and this could be a major source of perturbation in the wave propagation between the two layers, and have an impact on the general circulation and therefore on the climate.


Solar Cycle Ozone Depletion Stratospheric Ozone Lower Stratosphere Middle Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aikin AC, Chanin ML, Nash J and Kendig DJ (1991) Temperature trends in the lower mesosphere. Geophys. Res. Lett., 18, 3, 416–41.CrossRefGoogle Scholar
  2. Angell JK (1988) Variations and trends in tropospheric and stratospheric global temperatures, 1958–87. J. Climate, 12, 1296–1313CrossRefGoogle Scholar
  3. Brasseur G and Hitchman MH (1988) Stratospheric Response to Trace Gas Perturbations: Changes in Ozone and Temperature Distributions. Science, 240, 634–637CrossRefGoogle Scholar
  4. Brasseur G, Hitchman MH, Walters S, Dymek M, Falise E and Pirre M (1990) An Interactive Chemical Dynamical Radiative Two-Dimensional Model of the Middle Atmosphere. Journal of Geophys. Res., 95, 5639–5655Google Scholar
  5. Clemesha BR, Simonich DM and Batista PP (1992) A long-term trend in the height of the atmospheric sodium layer: possible evidence for global change. Geophys. Res. Lett., 19, 457–460Google Scholar
  6. Finger FG, Gelman ME, Wild JD, Chanin ML, Hauchecorne A, and Miller AJ (1992). Evaluation of NMC upper stratospheric temperature analyses using rocketsonde and lidar data. Bull. Amer. Meteor. Soc., 81 (in press)Google Scholar
  7. Gadsden M, (1990) A secular change in noctilucent cloud occurrence J. Atmos. and Terr. Phys. 52, 247–251CrossRefGoogle Scholar
  8. Hauchecorne A, Chanin ML and Keckhut P (1991) Climatology of the middle atmospheric temperature (30–90 km) and trends as seen by Rayleigh lidar above South of France. J. Geophys. Res., 96. D8, 15.297–15. 309Google Scholar
  9. Keckhut P, Hauchecorne A, Chanin ML (1992) A critical review of the data base acquired for the long term surveillance of the middle atmosphere by the french Rayleigh lidars. Submitted to J. Ocean Atmos. Techn.Google Scholar
  10. Kokin GA, Lysenko EV, Rosenfelf SX (1990) Temperature changes in the stratosphere and mesophere during 1964–1988 based on rocket sounding data. Ivestia Akademii Nauk, Phys. Atm. Okeana 26, 702–710Google Scholar
  11. Kokin GA and Lysenko EV (1993) On temperature trends of the atmosphere from the rocket and radiosonde data, submitted to J. Atm. Terr. Phys.Google Scholar
  12. Labitzke K and von Loon H (1991) Some complications in determining trends in the stratosphere. Adv. Space Res., 11, 21–30CrossRefGoogle Scholar
  13. Mc Cormick MP, Veiga RE and Chu WP (1992) Stratospheric ozone profile and total ozone trends derived form the SAGE I and SAGE II data. Geophys. Res. Lett., 19, 269–272CrossRefGoogle Scholar
  14. Miller A, Nagatani JRM, Tiao GC, Niu XF, Reinsel GC, Wuebbles D and Grant K (1992) Comparisons of observed ozone and temperature trends in the lower stratosphere. Geophys. Res. Lett., 19, 9, 929–932CrossRefGoogle Scholar
  15. Oort AH, and Liu H (1992) Upper air temperature trends over the globe 1958–1989. J. Climate (in press)Google Scholar
  16. Ramaswamy V, Schwarzkopf MD, Shine KP (1992) Radiative forcing of climate from halocarbon-induced global stratospheric ozone loss, Nature, 355, 810–812CrossRefGoogle Scholar
  17. Rind D, Suozzo R, Balachandran NK, Prather MJ, (1990) Climate Change and the Middle Atmosphere. Part I: The Doubled CO2 Climate. Journal of Atmospheric Sciences, 47, 4.Google Scholar
  18. Rind D and Lacis A (1992) The role of the stratosphere in climate change. Survey in Geophys. (in press)Google Scholar
  19. Roble RG and Dickinson RE (1989) How will changes in carbon dioxide and methane modify the main structure of the mesosphere and thermosphere? Geophys. Res. Lett. 16, 1441–1444CrossRefGoogle Scholar
  20. Taubenheim J, von Cossart G and Entzian G (1990) Evidence fo CO2 induced progressive cooling of the middle atmosphere derived from radio observations. Adv. Space Res. 10, 71–74CrossRefGoogle Scholar
  21. Thomas GE (1991) Mesospheric clouds and the physics of the mesopause region. Rev. of Geophys. 24, 4 553–575CrossRefGoogle Scholar
  22. Tiao GC, Reinsel GC, Pedrich JH, Allenby GM, Mateer CL, Miller AJ, DeLuisi JJ, (1986) A statistical trend analysis of ozonosonde data. J. Geophys. Res., 91, 13, 121–13, 136Google Scholar
  23. WMO, Scientific assessment of stratospheric ozone (1989), World meteorological organisation Global Ozone Research and Monitoring Project, Report No 20, Eds Albritton DL and Watson RT, 1990.Google Scholar
  24. WMO, Scientific assessment of ozone depletion (1991), World meteorological organisation Global Ozone Research and Monitoring Project, Report No 25, Eds Albritton DL and Watson RT, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Marie-Lise Chanin
    • 1
  1. 1.Service d’Aéronomie du CNRSVerrières-le-BuissonFrance

Personalised recommendations