Troposphere-Stratosphere Coupling in the Tropics: The Role of El Nino and the QBO

  • G. C. Reid
  • K. S. Gage
Conference paper
Part of the NATO ASI Series book series (volume 8)


The chemical composition and dynamics of the tropical stratosphere are largely determined by forcing from the underlying troposphere,transmitted through the tropical tropopause. The properties of the tropopause region of the atmosphere are reviewed, with emphasis on the roles of Pacific sea-surface temperature variability in the El Niño mode and the stratospheric QBO as the principal factors that determine interannual variations.


Convective Activity Meridional Circulation Lower Stratosphere Hadley Circulation Meridional Temperature Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman TP, Liou KN, Valero FPJ, Pfister L (1988) Heating rates in tropical anvils. J Atmos Sci 45: 1606–1622CrossRefGoogle Scholar
  2. Angell JK (1981) Comparison of variations in atmospheric quantities with sea surface temperature variations in the equatorial eastern Pacific. Mon Wea Rev 109: 230–243CrossRefGoogle Scholar
  3. Angell JK, Korshover J (1983) Global temperature variations in the troposphere and stratosphere, 1958–1982. Mon Wea Rev 111: 901–921CrossRefGoogle Scholar
  4. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18: 820–828CrossRefGoogle Scholar
  5. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97: 163–172CrossRefGoogle Scholar
  6. Danielsen EF (1982) A dehydration mechanism for the stratosphere. Geophys Res Lett 9: 605–608CrossRefGoogle Scholar
  7. Dunkerton TJ (1978) On the mean meridional mass motions of the stratosphere and mesosphere. J Atmos Sci 35: 2325–2333CrossRefGoogle Scholar
  8. Gage KS, Reid GC (1986) The tropical tropopause and the El Niño of 1982-83. J Geophys Res 91: 13315–13317CrossRefGoogle Scholar
  9. Garcia, RR (1987) On the mean meridional circulation of the middle atmosphere. J Atmos Sci 44: 3599–3609CrossRefGoogle Scholar
  10. Hasebe F (1992) Dynamical response of the tropical total ozone to the stratospheric zonal wind and the sea surface temperature changes. J Atmos Sci (in press)Google Scholar
  11. Komhyr WD, Oltmans SJ, Grass RD, Leonard RK (1991) Possible influence of long-term sea surface temperature anomalies in the tropical Pacific on global ozone. Canad J Phys 69: 1093–1102CrossRefGoogle Scholar
  12. Krishna Murthy BV, Parameswaran K, Rose KO (1986) Temporal variations of the tropical tropopause characteristics. J Atmos Sci 43: 914–922CrossRefGoogle Scholar
  13. Lindzen RS, Holton JR (1968) A theory of the quasi-biennial oscillation. J Atmos Sci 25: 1095–1107CrossRefGoogle Scholar
  14. Naujokat B (1986) An update of the observed quasi-biennial oscillation of the stratospheric winds over the equator. J Atmos Sci 43: 1873–1877CrossRefGoogle Scholar
  15. Newell RE, Gould-Stewart S (1981) A stratospheric fountain? J Atmos Sci 38: 2789–2796CrossRefGoogle Scholar
  16. Newell RE, Weare BC (1976) Factors governing tropospheric mean temperature. Science 194: 1413–1414CrossRefGoogle Scholar
  17. Newell RE, Kidson JW, Vincent DG (1969) Annual and biennial modulations in the tropical Hadley cell circulation. Nature 222: 76–78CrossRefGoogle Scholar
  18. Pan YH, Oort AH (1983) Global climate variations connected with sea surface temperature anomalies in the eastern equatorial Pacific Ocean for the 1958–73 period. Mon Wea Rev 111: 1244–1258CrossRefGoogle Scholar
  19. Plumb RA (1982) Zonally symmetric Hough modes and meridional circulations in the middle atmosphere. J Atmos Sci 39: 983–991Google Scholar
  20. Plumb RA, Bell RC (1982) A model of the quasi-biennial oscillation on an equatorial beta-plane. Quart J Roy Met Soc 108: 335–352CrossRefGoogle Scholar
  21. Reed RJ (1964) A tentative model of the 26-month oscillation in tropical latitudes. Quart J Roy Met Soc 90: 441–466CrossRefGoogle Scholar
  22. Reed RJ, Vlcek CL (1969) The annual temperature variation in the lower tropical stratosphere. J Atmos Sci 26: 163–167CrossRefGoogle Scholar
  23. Reid GC, Gage KS (1981) On the annual variation in height of the tropical tropopause. J Atmos Sci 38: 1928–1938CrossRefGoogle Scholar
  24. Reid GC, Gage KS (1985) Interannual variations in the height of the tropical tropopause. J Geophys Res 90: 5629–5635CrossRefGoogle Scholar
  25. Reid GC, Gage KS, McAfee JR (1989) The thermal response of the tropical atmosphere to variations in equatorial Pacific sea surface temperature. J Geophys Res 94: 14705–14716CrossRefGoogle Scholar
  26. Rosen RD, Salstein DA (1983) Variations in atmospheric angular momentum on global and regional scales and the length of day. J Geophys Res 88: 5451–5470CrossRefGoogle Scholar
  27. Schlesinger ME, Mitchell JFB (1987) Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Revs Geophys 25: 760–798CrossRefGoogle Scholar
  28. Shiotani M (1992) Annual, quasi-biennial and El Niño-Southern Oscillation (ENSO) time-scale variations in equatorial total ozone. J Geophys Res 97: 7625–7633Google Scholar
  29. Weare BC (1986) An extension of an El Niño index. Mon Wea Rev 114: 644–647CrossRefGoogle Scholar
  30. Weaie BC, Navato AR, Newell RE (1976) Empirical orthogonal analysis of Pacific Sea surface temperatures. J Phys Oceanogr 6: 671–678CrossRefGoogle Scholar
  31. Wolter K, Hastenrath S (1989) Annual cycle and long-term trends of circulation and climate variability over the tropical oceans. J Climate 2: 1329–1351CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • G. C. Reid
    • 1
  • K. S. Gage
    • 1
  1. 1.Aeronomy LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations