The Stratosphere: An Introduction

  • G. P. Brasseur
  • A. K. Smith
  • C. F. Granier
Conference paper
Part of the NATO ASI Series book series (volume 8)


The paper presents an introduction to scientific problems related to ozone in the stratosphere. Key uncertainties in our understanding of the chemistry and dynamics of this region are pointed out. Model simulations of the ozone evolution during the 1980s are discussed to illustrate the importance of heterogeneous chemical reactions in the lower stratosphere.


Gravity Wave Ozone Concentration Potential Vorticity Ozone Depletion Polar Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. G., W. H. Brune, and M. H. Profitt, 1989: Ozone destruction by chlorine radicals within the Antarctic vortex: The spatial and temporal evolution of CIO-O3 anticorrelation based on in situ ER-2 data, J. Geophys. Res., 94, 11, 465–11, 479.Google Scholar
  2. Austin, J., N. Butchart, and K. P. Shine, 1992: Possibility of an Arctic ozone hole in a doubled-CO2 climate, Nature, 360, 221–225.CrossRefGoogle Scholar
  3. Bates, D. R., and M. Nicolet, 1950: The photochemistry of atmospheric water vapor, J. Geophys. Res., 55, 301–327.CrossRefGoogle Scholar
  4. Bekki, S., R. Toumi, J. A. Pyle, and A. E. Jones, 1991: Future aircraft and global ozone, Nature, 354, 193–194.CrossRefGoogle Scholar
  5. Blake, D., and F. Rowland, 1988: Continuing worldwide increase in tropospheric methane 1978–1987, Science, 239, 1129–1131.CrossRefGoogle Scholar
  6. Brasseur, G., and M. H. Hitchman, 1987: The effect of breaking gravity waves on the distribution of trace species in the middle atmosphere, in Transport Processes in the Middle Atmosphere, edited by G. Visconti and R. Garcia, pp. 215–227, NATO-ASI Series, Reidel, Hingham, Mass.Google Scholar
  7. Brasseur, G., M. H. Hitchman, S. Walters, M. Dymek, E. Falise, and M. Pirre, 1990: An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere, J. Geophys. Res., 95, 5639–5655.CrossRefGoogle Scholar
  8. Brasseur, G., and C. Granier, 1992: Mount Pinatubo aerosols, chlorofluorocarbons and ozone depletion, Science, 257, 1239–1242.CrossRefGoogle Scholar
  9. Brieglieb, B., 1992: Long wave band model for thermal radiation in climate studies,/. Geophys. Res., 97, 11, 475–11, 485.Google Scholar
  10. Crutzen, P. J., 1971: Ozone production rates in an oxygen, hydrogen-nitrogen oxide atmosphere, J. Geophys. Res., 76, 7311–7327.CrossRefGoogle Scholar
  11. Crutzen, P. J., 1976: The possible importance of CSO for the sulfate layer of the stratosphere, Geophys. Res. Lett., 3, 73–76.CrossRefGoogle Scholar
  12. Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207–210.CrossRefGoogle Scholar
  13. Gille, J. C., 1987: Distributions of ozone and nitric acid measured by the Limb Infrared Monitor of the Stratosphere (LIMS), in Transport Processes in the Middle Atmosphere, edited by G. Visconti and R. Garcia, pp. 73–85, NATO-ASI Series, Reidel, Hingham, Mass.Google Scholar
  14. Gille, J. C., and J. M. Russell III, 1984: The Limb Infrared Monitor of the Stratosphere: Experiment description, performance and results, J. Geophys. Res., 89, 5125–5140.CrossRefGoogle Scholar
  15. Granier, C., and G. Brasseur, 1992: Impact of heterogeneous chemistry on model predictions of ozone changes, /. Geophys. Res., 97, 18, 015–18, 033.Google Scholar
  16. Grant, W., et al., 1992: Observations of reduced ozone concentrations in the tropical stratosphere after the eruption of Mt. Pinatubo, Geophys. Res. Lett., 19, 1109–1112.CrossRefGoogle Scholar
  17. Hampson, J., 1964: Photochemical behavior of the ozone layer, Tech. Note 1627, Can. Arm. Res. Dev. Establish., Quebec.Google Scholar
  18. Hartmann, D. L., K. R. Chan, B. L. Gary, M. R. Schoeberl, P. A. Newman, R. L. Martin, M. Loewenstein, J. R. Podolske, and S. E. Strahan, 1989: Potential vorticity and mixing in the south polar vortex during spring, J. Geophys. Res., 94, 11, 625–11, 640.Google Scholar
  19. Hitchman, M. H., and G. Brasseur, 1988: Rossby wave activity in a two- dimensional model: Closure for wave driving and meridional eddy diffusivity, J. Geophys. Res., 93, 9405–9417.CrossRefGoogle Scholar
  20. Hitchman, M. H., J. C. Gille, C. D. Rodgers, and G. Brasseur, 1989: The separated polar winter stratopause: A gravity wave driven climatological feature, J. Atmos. Sci., 46, 410–422.CrossRefGoogle Scholar
  21. Hofmann, D. J., and S. Solomon, 1989: Ozone destruction through heterogeneous chemistry following the eruption of El Chichon, J. Geophys. Res., 94, 5029–5041.CrossRefGoogle Scholar
  22. HSRP, 1992: The Atmospheric Effects of Stratospheric Aircraft: A first program report, High Speed Research Program Annual Review, NASA Reference Publication, 1272, NASA, Washington, D. CGoogle Scholar
  23. IPCC, 1990: Climate Change. The PICC Scientific Assessment, edited by J. T. Houghton, G. J. Jenkins, and J. J. Ephraums, Intergovernmental Panel on Climate Change, Cambridge University Press, 365 pp.Google Scholar
  24. Johnston, H., 1971: Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust, Science, 173, 517–522.CrossRefGoogle Scholar
  25. Johnston, H. S., D. E. Kinnison, and D. J. Wuebbles, 1989: Nitrogen oxides from high-altitude aircraft: An update of potential effects on ozone, J. Geophys. Res., 94, 16, 351–16, 363.Google Scholar
  26. Labitzke, K., and M. P. McCormick, 1992: Stratospheric temperature increases due to Pinatubo aerosols, Geophys. Res. Lett., 19, 207–210.CrossRefGoogle Scholar
  27. Lefevre, F., G. Brasseur, L Folkins, A. K. Smith, 1993: Stratospheric chlorine monoxide and ozone: A three-dimensional model, submitted to Nature.Google Scholar
  28. Leu, M. T., 1988: Laboratory studies of sticking coefficients and heterogeneous reactions important in the Antarctic stratosphere, Geophys. Res. Lett., 15, 17–20.CrossRefGoogle Scholar
  29. Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown, /. Geophys. Res., 86, 9707–9714.CrossRefGoogle Scholar
  30. Madronich, S., and C. Granier, 1992: Impact of recent total ozone changes on tropospheric ozone photodissociation, hydroxyl radicals, and methane trends, Geophys. Res. Lett., 19, 465–467.CrossRefGoogle Scholar
  31. Mankin, W. G., M. T. Coffey, and A. Goldman, 1992: Airborne observations of SO2, HC1, and O3 in the stratospheric plume of the Pinatubo volcano in July 1991, Geophys. Res. Lett., 19, 179–182.CrossRefGoogle Scholar
  32. McCormick, M. P., T. J. Swissler, E. Hilsenrath, A. J. Krueger, and M. T. Osborn, 1984: Satellite and correlative measurements of stratospheric ozone: Comparison of measurements made by SAGE, ECC, balloons, chemiluminescent, and optical rocketsondes, J. Geophys. Res., 89, 5315– 5320.Google Scholar
  33. McCormick, M. P., and J. C. Larsen, 1986: Antarctic springtime measurements of ozone, nitrogen dioxide, and aerosol extinction by SAM II, SATE and SAGE II, Geophys. Res. Lett., 13, 1280–1283.CrossRefGoogle Scholar
  34. Mclntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere, Nature, 305, 593–600.CrossRefGoogle Scholar
  35. McPeters, R. D., D. F. Heath, and P. K. Bhartia, 1984: Average ozone profiles for 1979 from Nimbus 7 SBUV instrument, J. Geophys. Res., 89, 5199–5214.CrossRefGoogle Scholar
  36. Molina, M. J., and F. S. Rowland, 1974: Stratospheric sink for chlorofluoromethanes: Chlorine-atom catalyzed destruction of ozone, Nature, 249, 810–812.CrossRefGoogle Scholar
  37. Novelli, P., T. Conway, D. Kitzis, P. Lang, R. Martin, K. Masari, L. Steele, P. Tans, K. Thoning, and L. Waterman, 1990: Geophysical monitoring for climatic change, Summary Report 1989, NOAA-ERL, Boulder, Colorado.Google Scholar
  38. Plumb, R. A., and M. K. W. Ko, 1992: Interrelationships between mixing ratios of long-lived stratospheric constituents, J. Geophys. Res., 97, 10, 145–10, 156.Google Scholar
  39. Rusch, D. W., G. H. Mount, C. A. Barth, R. J. Thomas, and M. T. Callan, 1984: Solar Mesosphere Explorer ultraviolet spectrometer: Measurement of ozone in the 1.0–0.1 mbar region, J. Geophys. Res., 89, 11, 677–11, 687.CrossRefGoogle Scholar
  40. Schoeberl, M. R., P. K. Bhartia, and E. Hilsenrath, 1993: Tropical ozone loss following the eruption of Mt. Pinatubo, Geophys. Res. Lett., 20, 29–32.CrossRefGoogle Scholar
  41. Steele, L., P. Fraser, R. Rasmussen, M. Khalil, T. Conway, A. Crawford, R. Gammon, K. Masari, and K. Thoning, 1987: The global distribution of methane in the troposphere, J. Atmos. Chem., 5, 125–171.CrossRefGoogle Scholar
  42. Stolarski, R. S., A. J. Krueger, M. R. Schoeberl, R. D. McPeters, P. A. Newman, and J. C. Alpert, 1986: Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease, Nature, 322, 808–811.CrossRefGoogle Scholar
  43. Stolarski, R. S., and R. J. Cicerone, 1974: Stratospheric chlorine: A possible sink for ozone, Can. J. Chem., 52, 1610–1615.CrossRefGoogle Scholar
  44. Stolarski, R. S., P. Bloomfield, R. D. McPeters, and J. R. Herman, 1991: Total ozone trends deduced from Nimbus-7 TOMS data, Geophys. Res. Lett, 18, 1015–1018.CrossRefGoogle Scholar
  45. Thomas, R. J., C. A. Barth, D. W. Rusch, and R. W. Sanders, 1984: Solar Mesosphere Explorer near infrared spectrometer: Measurements of 1.27 μ radiances and the inference of mesospheric ozone, J. Geophys. Res., 89, 9569–9580.CrossRefGoogle Scholar
  46. Tolbert, M. A., M. J. Rossi, R. Malhotra, and D. M. Golden, 1987: Reaction of chlorine nitrate with hydrogen chloride and water at Antarctic stratospheric temperatures, Science, 238, 1258–1260.CrossRefGoogle Scholar
  47. Turco, R. P., O. B. Toon, and P. Hamill, 1989: Heterogeneous physiochemistry of the polar ozone hole, J. Geophys. Res., 94, 16, 493–16, 510.Google Scholar
  48. Waters, J. W., L. Froidevaux, W. G. Read, G. L. Manney, L. S. Elson, D. A. Flower, R. F. Jarnot, R. S. Harwood, 1993: Stratospheric chlorine monoxide and ozone: First results from UARS MLS, submitted to Nature.Google Scholar
  49. Weisenstein, D., M. K. W. Ko, J. M. Rodriquez, and N. D. Sze, 1991: Impact of heterogeneous chemistry on model-calculated ozone change due to HSCT aircraft, Geophys. Res. Lett., 18, 1991–1994.CrossRefGoogle Scholar
  50. WMO/UNEP, 1990: Scientific assessment of stratospheric ozone, World Meteorological Organization, Global Ozone and Monitoring Project, Report NO. 20, Vol. I, Geneva, Switzerland.Google Scholar
  51. WMO, 1991: Scientific assessment of ozone depletion: 1991, World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No. 25, Geneva, Switzerland.Google Scholar
  52. Wofsy, S. C., M. B. McElroy, and Y. L. Yung, 1975: The chemistry of atmospheric bromine, Geophys. Res. Lett., 2, 215–218.CrossRefGoogle Scholar
  53. Wofsy, S. C., M. J. Molina, R. J. Salawitch, L. E. Fox, and M. B. McElroy, 1988: Interactions between HC1, NO2 and H2O ice in the Antarctic stratosphere: Implications for ozone, J. Geophys. Res, 93, 2442–2450.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • G. P. Brasseur
    • 1
  • A. K. Smith
    • 1
  • C. F. Granier
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations