Skip to main content

ADP-Ribosylation of Small GTPases by Clostridium botulinum Exoenzyme C3 and Pseudomonas aeruginosa Exoenzyme S

  • Chapter
GTPases in Biology I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 1))

  • 167 Accesses

Abstract

Bacterial toxins have served as important tools for the study of eukaryotic cell biology, especially signal transduction by the heterotrimeric G-proteins. Many of these toxins catalyze the ADP-ribosylation of specific proteins inside the host cell. In this reaction, the nicotinamide-ribose bond of nicotinamide-adenine dinucleotide (NAD) is split and the ADP-ribose moiety is transferred to the substrate protein. Most of these toxins, termed ADP-ribosyltransferases, modify G-proteins or other GTPases. The addition of the ADP-ribose group to the substrate protein alters the function of that protein dramatically. For example, ADP-ribosylation of G by cholera toxin decreases GTP hydrolysis (Cassel and Selinger 1977), while the modification of G by pertussis toxin alters its interaction with receptors (Kurose et al. 1983; Murayama and Ui 1983). Diphtheria toxin and Pseudomonas exotoxin A both ADP-ribosylate the same residue in elongation factor 2 (EF-2), and inhibit interaction of EF-2 with the ribosome (Collier 1967; Iglewski and Kabat 1975). In all cases, the actions of the toxins on the GTPases have drastic consequences for the eukaryotic cell, as normal signal transduction is disrupted. An additional characteristic of the bacterial ADP-ribosyltransferases is that they all have well-defined cell-binding or “B” components that are functionally distinct from the “A” domains, which are enzymically active after entry into the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aktories K, Barmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Braun U, Rosener S, Just I, Hall A (1989) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158:209–213

    Article  PubMed  CAS  Google Scholar 

  • Aktories K, Mohr C, Koch G (1992) Clostridium botulinum C3 ADP-ribosyltransferase. Curr Topics Microbiol Immunol 175:115–131

    Article  CAS  Google Scholar 

  • Barbacid M (1987) ras Genes Annu Rev Biochem 56:779–827

    Article  CAS  Google Scholar 

  • Barrowman MM, Cockcroft S, Gomperts BD (1986) Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils. Nature 319:504–507

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson T, Sarndahl E, Stendahl O, Andersson T (1990) Involvement of GTP-binding proteins in actin polymerization in human neutrophils. Proc Natl Acad Sci USA 87:2921–2925

    Article  PubMed  CAS  Google Scholar 

  • Bjorn MJ, Pavlovskis OR, Thompson MR, Iglewski BH (1979) Production of exoenzyme S during Pseudomonas aeruginosa infections in burned mice. Infect Immun 24:837–842

    PubMed  CAS  Google Scholar 

  • Braun U, Habermann B, Just I, Aktories K, Vandekerckhove J (1989) Purification of the 22 kDa protein substrate of botulinum ADP-ribosyltransferase C3 from porcine brain cytosol and its characterization as a GTP-binding protein highly homologous to the rho gene product. FEBS Lett 243:70–76

    Article  PubMed  CAS  Google Scholar 

  • Cassel D, Selinger Z (1977) Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 74:3307–3311

    Article  PubMed  CAS  Google Scholar 

  • Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J 8:1087–1092

    PubMed  CAS  Google Scholar 

  • Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M (1990) Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62:317–329

    Article  PubMed  CAS  Google Scholar 

  • Coburn J, Gill DM (1991) ADP-ribosylation of p21ras and related proteins by Pseudomonas aeruginosa exoenzyme S. Infect Immun 59:4259–4262

    PubMed  CAS  Google Scholar 

  • Coburn J, Dillon ST, Iglewski BH, Gill DM (1989a) Exoenzyme S of Pseudomonas aeruginosa ADP-ribosylates the intermediate filament protein vimentin. Infect Immun 57:996–998

    PubMed  CAS  Google Scholar 

  • Coburn J, Wyatt RT, Iglewski BH, Gill DM (1989b) Several GTP-binding proteins, including p21c-H-ras, are preferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem 264:9004–9008

    PubMed  CAS  Google Scholar 

  • Coburn J, Kane AV, Feig L, Gill DM (1991) Pseudomonas aeruginosa exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. J Biol Chem 266:6438–6446

    PubMed  CAS  Google Scholar 

  • Collier RJ (1967) Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors. J Mol Biol 25:83–98

    Article  PubMed  CAS  Google Scholar 

  • Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (1989) rac, a novel ras-related family of proteins that are botulinum toxin substrates. J Biol Chem 264:16378–16382

    PubMed  CAS  Google Scholar 

  • Drazin R, Kandel J, Collier RJ (1971) Structure and activity of diphtheria toxin: attack by trypsin at a specific site within the intact molecule. J Biol Chem 246:1504–1510

    PubMed  CAS  Google Scholar 

  • Fischer TH, Gatling MN, Lacal JC, White GC II (1990) rap 1B, a cAMP-dependent protein kinase substrate, associates with the cytoskeleton. J Biol Chem 265:19405–19408

    PubMed  CAS  Google Scholar 

  • Fischer von Mollard G, Migerny GA, Baumert M, Perin MS, Hanson TJ, Burger PM, Jahn R, Sudhof TC (1990) rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc Natl Acad Sci USA 87:1988–1992

    Article  Google Scholar 

  • Fischer von Mollard G, Sudhof TC, Jahn R (1991) A small GTP-binding protein dissociates from synaptic vesicles during exocytosis. Nature 349:79–81

    Article  Google Scholar 

  • Frank DW, Iglewski BH (1991) Cloning and sequence analysis of a trans-regulatory locus required for exoenzyme S synthesis in Pseudomonas aeruginosa. J Bacteriol 173:6460–6468

    PubMed  CAS  Google Scholar 

  • Goud B, Salminen A, Walworth NC, Novick PJ (1988) A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53:753–768

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1990) The cellular functions of small GTP-binding proteins. Science 249:635–640

    Article  PubMed  CAS  Google Scholar 

  • Hata Y, Kikuchi A, Sasaki T, Schaber MD, Gibbs JB, Takai Y (1990) Inhibition of the ras p21 GTPase-activating protein-stimulated GTPase activity of c-Ha-ras p21 by smg p21 having the same effector domain as ras p21’s. J Biol Chem 265:7104–7107

    PubMed  CAS  Google Scholar 

  • Iglewski BH (1988) Pseudomonas toxins. In: Hardegree MC, Tu AT (eds) Handbook of natural toxins, vol. 4. Dekker, New York

    Google Scholar 

  • Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72:2284–2288

    Article  PubMed  CAS  Google Scholar 

  • Iglewski BH, Sadoff J, Bjorn MJ, Maxwell ES (1978) Pseudomonas aeruginosa exoenzyme S: an adenosine diphophate ribosyl transferase distinct from toxin A. Proc Natl Acad Sci USA 75:3211–3215

    Article  PubMed  CAS  Google Scholar 

  • Kahn RA, Gilman AG (1986) The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem 261:7906–7911

    PubMed  CAS  Google Scholar 

  • Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M (1989) A ras-related gene with transformation suppressor activity. Cell 56:77–84

    Article  PubMed  CAS  Google Scholar 

  • Kurose H, Katada T, Amano T, Ui M (1983) Specific uncoupling by islet-activating protein, pertussis toxin, of negative signal transduction via adrenergic, cholinergic, and opiate receptors in neuroblastoma X glioma hybrid cells. J Biol Chem 258:4870–4875

    PubMed  CAS  Google Scholar 

  • Leppla SH, Ivins BE, Ezzell JW Jr (1985) Anthrax toxin. In: Leive L (ed) Microbiology 1985. American Society for Microbiology, Washington

    Google Scholar 

  • Maehama T, Takahashi K, Ohoka Y, Ohtsuka T, Ui M, Katada T (1991) Identification of a botulinum C3-like enzyme in bovine brain that catalyzes ADP-ribosylation of GTP-binding proteins. J Biol Chem 266:10062–10065

    PubMed  CAS  Google Scholar 

  • March PE (1992) Membrane-associated GTPases in bacteria. Mol Microbiol 6:1253–1257

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey M, Johnson JS, Goud B, Myers AM, Rossier J, Popoff MR, Madaule P, Boquet P (1991) The small GTP-binding protein Rho1p is localized on the Golgi apparatus and post-Golgi vesicles in Saccharomyces cerevisiae. J Cell Biol 115:309–319

    Article  PubMed  CAS  Google Scholar 

  • Mekalanos JJ, Collier RJ, Romig WR (1979) Enzymic activity of cholera toxin: relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem 254:5855–5861

    PubMed  CAS  Google Scholar 

  • Melançon P, Glick BS, Malhotra V, Weidman PJ, Serafini T, Gleason ML, Orci L, Rothman JE (1987) Involvement of GTP-binding “G” proteins in transport through the Golgi stack. Cell 51:1053–1062

    Article  PubMed  Google Scholar 

  • Mohr C, Koch G, Just I, Aktories K (1992) ADP-ribosylation by Clostridium botulinum C3 exoenzyme increases steady-state GTPase activities of recombinant rhoA and rhoB proteins. FEBS Lett 297:95–99

    Article  PubMed  CAS  Google Scholar 

  • Murayama T, Ui M (1983) Loss of the inhibitory function of the guanine nucleotide regulatory component of adenylate cyclase due to its ADP ribosylation by islet-activating protein, pertussis toxin, in adipocyte membranes. J Biol Chem 258:3319–3326

    PubMed  CAS  Google Scholar 

  • Nicas TI, Iglewski BH (1985) Contribution of exoenzyme S to the virulence of Pseudomonas aeruginosa. Antibiot Chemother 36:40–48

    PubMed  CAS  Google Scholar 

  • Nicas TI, Bradley J, Lochner JE, Iglewski BH (1985) The role of exoenzyme S in infections with Pseudomonas aeruginosa. J Infect Dis 152:716–721

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka T, Nagata K, Iiri T, Nozawa Y, Ueno K, Ui M, Katada T (1989) Activator protein supporting the botulinum ADP-ribosyltransferase reaction. J Biol Chem 264:15000–15005

    PubMed  CAS  Google Scholar 

  • Paterson HF, Self AJ, Garret MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Pizon V, Chardin P, Lerosey I, Oloffsson B, Tavitian A (1988) Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the “effector” region. Oncogene 3:201–204

    PubMed  CAS  Google Scholar 

  • Popoff MR, Boquet P, Gill DM, Eklund MW (1990) DNA sequence of exoenzyme C3, an ADP-ribosyltransferase encoded by Clostridium botulinum C and D phages. Nucleic Acids Research 18:1291

    Article  PubMed  CAS  Google Scholar 

  • Popoff MR, Hauser D, Boquet P, Eklund MW, Gill DM (1991) Characterization of the C3 gene of Clostridium botulinum types C and D and its expression in Escherichia coli. Infect Immun 59:3673–3679

    PubMed  CAS  Google Scholar 

  • Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8:418–426

    PubMed  CAS  Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyl transferase. J Biol Chem 264:8602–8605

    PubMed  CAS  Google Scholar 

  • Stearns T, Willingham MC, Botstein D, Kahn RA (1990) ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci USA 87:1238–1242

    Article  PubMed  CAS  Google Scholar 

  • Sugai M, Chen C-H, Wu H (1992a) Bacterial ADP-ribosyltransferase with a substrate specificity of the rho protein disassembles the Golgi apparatus in Vero cells and mimics the action of brefeldin A. Proc Natl Acad Sci USA 89:8903–8907

    Article  PubMed  CAS  Google Scholar 

  • Sugai M, Hashimoto K, Kikuchi A, Inoue S, Okumura H, Matsumoto K, Goto Y, Ohgai H, Moriishi K, Syuto B, Yoshikawa K, Suginaka H, Takai Y (1992b) Epidermal cell differentiation inhibitor ADP-ribosylates small GTP-binding proteins and induces hyperplasia of epidermis. J Biol Chem 267:2600–2604

    PubMed  CAS  Google Scholar 

  • Vasil ML, Kabat D, Iglewski BH (1977) Structure-activity relationships of an exotoxin of Pseudomonas aeruginosa. Infect Immun 16:353–361

    PubMed  CAS  Google Scholar 

  • Wolff J, Cook GH, Goldhammer AR, Berkowitz SA (1980) Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci USA 77:3841–3844

    Article  PubMed  CAS  Google Scholar 

  • Zahraoui A, Touchot N, Chardin P, Tavitian A (1989) The human rab genes encode a family of GTP-binding proteins related to yeast YPT1 and SEC4 products involved in secretion. J Biol Chem 264:12394–12401

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coburn, J. (1993). ADP-Ribosylation of Small GTPases by Clostridium botulinum Exoenzyme C3 and Pseudomonas aeruginosa Exoenzyme S. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology I. Handbook of Experimental Pharmacology, vol 108 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78267-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78267-1_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78269-5

  • Online ISBN: 978-3-642-78267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics