Skip to main content

GTP-Mediated Communication Between Intracellular Calcium Pools

  • Chapter
Book cover GTPases in Biology I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 1))

Abstract

The release of intracellular Ca2+ is widely established as a major component of receptor-mediated cytosolic Ca2+ signals (Gill et al. 1989; Berridge 1990; Berridge and Irvine 1989). Yet the nature and location of Ca2+ pools from which Ca2+ is released remain poorly characterized. There is good evidence that the endoplasmic reticulum (ER) is an important Ca2+-sequestering site within cells and a probable major target for the intracellular mediator of Ca2+ release, inositol 1,4,5-trisphosphate (InsP3) (Ghosh et al. 1989). However, the ER itself constitutes a large and heterogeneous organelle in most cells; obvious subdomains of the ER exist, including rough and smooth cisternae and the nuclear envelope. In addition, it is likely that microheterogeneity of ER results in subcompartments of ER that may have quite different properties, even though they are not morphologically distinguishable. For example, smooth cisternae are widely distributed in cells; some deep within the cell, others sometimes close to the plasma membrane. It is very possible that different Ca2+ handling properties are associated with ER at different locations. This does not necessarily imply that there are distinct Ca2+ transport mechanisms at such locations. Instead, differences may arise, for example, in proximity of ER cisternae to the plasma membrane, those closest receiving the most rapid exposure to the highest concentrations of InsP3. Others believe that organelles perhaps closely associated with, but distinct from, ER may represent the major Ca2+-signaling pools. Such organelles were termed “calciosomes” by Meldolesi and colleagues (Volpe et al. 1988). This view has been based on a number of observations including the immunocytochemical localization of Ca2+-binding proteins, Ca2+ pumps, and InsP3 receptors. However, as yet there does not seem to be overwhelming evidence for a clearly identifiable and discrete Ca2+-signaling organelle (Rossier and Putney 1991). Thus, whereas it may be reasonable to refer to the source of Ca2+ releasable by InsP3 as “calciosomes”, it is clear that we have no defined idea of what such organelles are or whether they are distinct from the ER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balch WE (1989) Biochemistry of interorganelle transport. A new frontier in enzymology emerges from versatile in vitro model systems. J Biol Chem 264:16965–16968

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1990) Calcium oscillations. J Biol Chem 265:9583–9586

    PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205

    Article  PubMed  CAS  Google Scholar 

  • Bian JH, Ghosh TK, Wang JC, Gill DL (1991) Identification of intracellular calcium pools. Selective modification by thapsigargin. J Biol Chem 266:8801–8806

    PubMed  CAS  Google Scholar 

  • Bourne HR (1988) Do GTPases direct membrane traffic in secretion. Cell 53:669–671

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132

    Article  PubMed  CAS  Google Scholar 

  • Chueh SH, Gill DL (1986) Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms. J Biol Chem 261:13883–13886

    PubMed  CAS  Google Scholar 

  • Chueh SH, Mullaney JM, Ghosh TK, Zachary AL, Gill DL (1987) GTP-and inositol 1,4,5-trisphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines. J Biol Chem 262:13857–13864

    PubMed  CAS  Google Scholar 

  • Coburn J, Wyatt RT, Iglewski BH, Gill DM (1989) Several GTP-binding proteins, including p21c-H-ras, are preferred substrates of Pseudomonas aeruginosa exoenzyme S. J Biol Chem 264:9004–9008

    PubMed  CAS  Google Scholar 

  • Comerford JG, Dawson AP (1988) The mechanism of action of GTP on Ca2+ efflux from rat liver microsomal vesicles. Measurement of vesicle fusion by fluorescence energy transfer. Biochem J 249:89–93

    PubMed  CAS  Google Scholar 

  • Dawson AP (1985) GTP enhances inositol trisphosphate-stimulated Ca2+ release from rat liver microsomes. FEBS Lett 185:147–150

    Article  PubMed  CAS  Google Scholar 

  • Dawson AP, Comerford JG, Fulton DV (1986) The effect of GTP on inositol 1,4,5-trisphosphate-stimulated Ca2+ efflux from a rat liver microsomal fraction. Is a GTP-dependent protein phosphorylation involved? Biochem J 234:311–315

    CAS  Google Scholar 

  • Dawson AP, Hills G, Comerford JG (1987) The mechanism of action of GTP on Ca2+ efflux from rat liver microsomal vesicles. Biochem J 244:87–92

    PubMed  CAS  Google Scholar 

  • Ehrlich BE, Watras J (1988) Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum. Nature 336:583–586

    Article  PubMed  CAS  Google Scholar 

  • Fernandez JM, Neher E, Gomperts BD (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312:453–455

    Article  PubMed  CAS  Google Scholar 

  • Ferris CD, Huganir RL, Supattapone S, Snyder SH (1989) Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesides. Nature 342:87–89

    Article  PubMed  CAS  Google Scholar 

  • Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda N, Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein p400. Nature 342:32–38

    Article  PubMed  CAS  Google Scholar 

  • Ghosh TK, Eis PS, Mullaney JM, Ebert CL, Gill DL (1988) Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J Biol Chem 263:11075

    PubMed  CAS  Google Scholar 

  • Ghosh TK, Mullaney JM, Tarazi FT, Gill DL (1989) GTP-activated communication between distinct inositol 1,4,5-trisphosphate-sensitive and-insensitive calcium pools. Nature 340:236–239

    Article  PubMed  CAS  Google Scholar 

  • Ghosh TK, Bian J, Gill DL (1990) Intracellular calcium release is mediated by sphingosine derivatives generated in cells. Science 248:1653–1656

    Article  PubMed  CAS  Google Scholar 

  • Ghosh TK, Bian J, Short AD, Rybak SL, Gill DL (1991) Persistent intracellular calcium pool depletion by thapsigargin and its influence on cell growth. J Biol Chem 266:24690–24697

    PubMed  CAS  Google Scholar 

  • Gill DL (1982) Sodium channel, sodium pump, and sodium-calcium exchange activities in synaptosomal plasma membrane vesicles. J Biol Chem 257:10986–10990

    PubMed  CAS  Google Scholar 

  • Gill DL (1989) Calcium signalling: receptor kinships revealed. Nature 342:16–18

    Article  PubMed  CAS  Google Scholar 

  • Gill DL, Chueh SH (1985) An intracellular (ATP + Mg2+)-dependent calcium pump within the NIE-115 neuronal cell line. J Biol Chem 260:9289–9297

    PubMed  CAS  Google Scholar 

  • Gill DL, Grollman EF, Kohn LD (1981) Calcium transport mechanisms in membrane vesicles from guinea pig brain syncptosomes. J Biol Chem 256:184–192

    PubMed  CAS  Google Scholar 

  • Gill DL, Chueh SH, Whitlow CL (1984) Functional importance of the synaptic plasma membrane calcium pump and sodium-calcium exchanger. J Biol Chem 259:10807–10813

    PubMed  CAS  Google Scholar 

  • Gill DL, Chueh SH, Noel MW, Ueda T (1986a) Orientation of synaptic plasma membrane vesicles containing calcium pump and sodium-calcium exchange activities. Biochim Biophys Acta 856:165–173

    Article  PubMed  CAS  Google Scholar 

  • Gill DL, Ueda T, Chueh SH, Noel MW (1986b) Ca2+ release from endoplasmic reticulum is mediated by a guanine nucleotide regulatory mechanism. Nature 320:461–464

    Article  PubMed  CAS  Google Scholar 

  • Gill DL, Mullaney JM, Ghosh TK (1988a) Intracellular calcium translocation: mechanism of activation by guanine nucleotides and inositol phosphates. J Exp Biol 139:105–133

    PubMed  CAS  Google Scholar 

  • Gill DL, Chueh SH, Mullaney JM (1988b) In: Thorn NA, Treiman M, Petersen OH, Thaysen JH (eds) Molecular mechanisms in secretion. Munksgaard International, Copenhagen, pp 277–296 (Alfred Benzon Symposium 25)

    Google Scholar 

  • Gill DL, Ghosh TK, Mullaney JM (1989a) Calcium signalling mechanisms in endoplasmic reticulum activated by inositol 1,4,5-trisphosphate and GTP. Cell Calcium 10:363–374

    Article  PubMed  CAS  Google Scholar 

  • Gill DL, Mullaney JM, Ghosh TK, Chueh SH (1989b) In: Fiskum G (ed) Cell calcium metabolism: physiology, biochemistry, pharmacology, and clinical implications. Plenum, New York, pp 157–167

    Google Scholar 

  • Gill DL, Mullaney JM, Ghosh TK, Tarazi FI (1990) In: Naccache PH (ed) G-proteins and calcium Mobilization. CRC Press, New York, pp 95–119

    Google Scholar 

  • Henkart M (1980) Identification and function of intracellular calcium stores in axons and cell bodies of neurons. Fed Proc 39:2783–2789

    PubMed  CAS  Google Scholar 

  • Irvine RF (1990) “Quantal” Ca2+ release and the control of Ca2+ entry by inositol phosphates — a possible mechanism. FEBS Lett 263:5–9

    Article  PubMed  CAS  Google Scholar 

  • Irvine RF (1991) Inositol tetrakisphosphate as a second messenger: confusions, contradictions, and a potential resolution. Bioessays 13:1–9

    Article  Google Scholar 

  • Kaprielian Z, Fambrough DM (1987) Expression of fast and slow isoforms of the Ca2+-ATPase in developing chick skeletal muscle. Dev Biol 124:490–503

    Article  PubMed  CAS  Google Scholar 

  • Kinsella BT, Maltese WA (1991) rab GTP-binding proteins implicated in vesicular transport are isoprenylated in vitro at cysteines within a novel carboxyl-terminal motif. J Biol Chem 266:8540–854

    PubMed  CAS  Google Scholar 

  • Martonosi AN (1982) In: Cheung WY (ed) Calcium in cell function, vol 3. Academic, New York, pp 37–102

    Google Scholar 

  • Mignery GA, Südhof TC, Takei K, De Camilli P (1989) Putative receptor for 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342:192–195

    Article  PubMed  CAS  Google Scholar 

  • Muallem S, Pandol S, Beeker TG (1989) Hormone-evoked calcium release from intracellular stores is a quantal process. J Biol Chem 264:205–212

    PubMed  CAS  Google Scholar 

  • Mullaney JM, Chueh SH, Ghosh TK, Gill DL (1987) Intracellular calcium uptake activated by GTP. Evidence for a possible guanine nucleotide-induced transmembrane conveyance of intracellular calcium. J Biol Chem 262:13865–13872

    PubMed  CAS  Google Scholar 

  • Mullaney JM, Yu M, Ghosh TK, Gill DL (1988) Calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism. Proc Natl Acad Sci USA 85:2499–2503

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Okano H, Furuichi T, Aruga J, Mikoshiba K (1991) The subtypes of the mouse 1,4,5-trisphosphate receptor are expressed in a tissue-specific and developmentally specific manner. Proc Natl Acad Sci USA 88:6244–6248

    Article  PubMed  CAS  Google Scholar 

  • Plutner H, Schwaninger R, Pind S, Balch WE (1990) Synthetic peptides of the Rab effector domain inhibit vesicular transport through the secretory pathway. EMBO J 9:2375–2383

    PubMed  CAS  Google Scholar 

  • Putney JW Jr (1990) Capacitative calcium entry revisited. Cell calicium 11:611–624

    Article  CAS  Google Scholar 

  • Ross CA, Meldolesi J, Milner TA, Tomohide S, Supattapone S, Snyder SH (1989) Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339:468–470

    Article  PubMed  CAS  Google Scholar 

  • Rossier MF, Putney JW (1991) The identity of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in non-muscle cells: calciosome, endoplasmic reticulum... or both? Trends Neurosci 14:310–314

    Article  PubMed  CAS  Google Scholar 

  • Rubin EJ, Gill DM, Boquet P, Popoff MR (1988) Functional modification of a 21-kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol 8:418–426

    PubMed  CAS  Google Scholar 

  • Sambrook JF (1990) The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell 61:197–199

    Article  PubMed  CAS  Google Scholar 

  • Thastrup O, Cullen PJ, Drøbak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87:2466–2470

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Chueh SH, Noel MW, Gill DL (1986) Influence of inositol 1,4,5-trisphosphate and guanine nucleotides on intracellular calcium release within the NIE-115 neuronal cell line. J Biol Chem 261:3184–3192

    PubMed  CAS  Google Scholar 

  • Volpe P, Krause K-H, Hashimoto S, Zorzato F, Pozzan T, Meldolesi J, Lew DP (1988) “Calciosome,” a cytoplasmic organelle: the inositol 1,4,5-trisphosphate sensitive Ca2+ store of nonmuscle cells? Proc Natl Acad Sci USA 85:1091–1095

    Article  PubMed  CAS  Google Scholar 

  • Worley PF, Baraban JM, Supattapone S, Wilson VS, Snyder SH (1987) Regulation by pH and calcium. J Biol Chem 262:12132–12136

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gill, D.L., Ghosh, T.K., Short, A.D., Bian, J., Waldron, R.T. (1993). GTP-Mediated Communication Between Intracellular Calcium Pools. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology I. Handbook of Experimental Pharmacology, vol 108 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78267-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78267-1_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78269-5

  • Online ISBN: 978-3-642-78267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics