Synaptic Vesicle Membrane Traffic and the Cycle of Rab3

  • G. Fischer von Mollard
  • T. C. Südhof
  • R. Jahn
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 108 / 1)


Neurons are highly specialized cells which process and transmit information. Information is transferred between neurons via small molecules, the neurotransmitters. Neurotransmitters are stored in synaptic vesicles and are released by Ca2+-dependent exocytosis upon activation of the presynaptic cell (for reviews see Smith and Augustine 1988; De Camilli and Jahn 1990; Südhof and Jahn 1991).


Synaptic Vesicle Small GTPases Chromaffin Granule Membrane Traffic Synaptic Vesicle Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araki S, Kikuchi A, Hata Y, Isomura M, Takai Y (1990) Regulation of reversible binding of smgp25A, a ras p21 like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor (GDI). J Biol Chem 265:13007–13015PubMedGoogle Scholar
  2. Ayala J, Olofsson B, Tavitian A, Prochiantz A (1989) Developmental and regional regulation of rab3: a new brain specific ras-like gene. J Neurosci Res 22:241–246PubMedCrossRefGoogle Scholar
  3. Balch WE (1990) Small GTP-binding proteins in vesicular transport. TIBS 15:473–477PubMedGoogle Scholar
  4. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132PubMedCrossRefGoogle Scholar
  5. Burstein ES, Macara IG (1992) Characterization of a guanine nucleotide-releasing factor and a GTPase-activating protein that are specific for the ras-related protein p25 rab3A. Proc Natl Acad Sci USA 89: 1154–1158PubMedCrossRefGoogle Scholar
  6. Burstein ES, Linko-Stentz K, Lu Z, Macara IG (1991) Regulation of the GTPase activity of the ras-like protein p25 rab3A evidence for a rab3A-specific GAP. J Biol Chem 266:2689–2692PubMedGoogle Scholar
  7. Casey PJ, Thissen JA, Moolmaw JF (1991) Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proc Natl Acad Sci USA 88:8631–8635PubMedCrossRefGoogle Scholar
  8. Ceccarelli B, Hurlbut WP (1980) Vesicle hypothesis of the release of quanta of acetylcholine. Physiol Rev 60:396–441PubMedGoogle Scholar
  9. Chavrier P, Gorvel JP, Stelzer E, Simons K, Gruenberg J, Zerial M (1991) Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature 353:769–772PubMedCrossRefGoogle Scholar
  10. Darchen F, Zahraoui A, Hammel F, Monteils MP, Tavitian A, Scherman D (1990) Association of the GTP-binding protein Rab3A with bovine adrenal chromaffin granules. Proc Natl Acad Sci USA 87:5692–5696PubMedCrossRefGoogle Scholar
  11. De Camilli P, Jahn R (1990) Pathways to regulated exocytosis in neurons. Annu Rev Physiol 52:625–645PubMedCrossRefGoogle Scholar
  12. Farnsworth CC, Kawata M, Yoshida Y, Takai Y, Gelb MH, Glomset JA (1991) C terminus of the small GTP-binding protein smgp25A contains two geranylgeranylated cysteine residues and a methyl ester. Proc Natl Acad Sci USA 88:6196–6200PubMedCrossRefGoogle Scholar
  13. Fischer von Mollard G, Mignery G, Baumert M, Perkin MS, Hanson TJ, Burger PM, Jahn R, Südhof TC (1990) Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc Natl Acad Sci USA 87:1988–1992CrossRefGoogle Scholar
  14. Fischer von Mollard G, Südhof TC, Jahn R (1991) A small GTP-binding protein dissociates from synaptic vesicles during exocytosis. Nature 349:79–81CrossRefGoogle Scholar
  15. Gallwitz D, Donath C, Sander C (1983) A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature 306:704–707PubMedCrossRefGoogle Scholar
  16. Griffiths G, Gruenberg J (1991) The arguments for pre-existing early and late endosomes. TICB 1:5–9Google Scholar
  17. Hancock JF, Magee AI, Childs JE, Marshall CJ (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57:1167–1177PubMedCrossRefGoogle Scholar
  18. Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344PubMedCrossRefGoogle Scholar
  19. Horiuchi H, Kawata M, Katayama M, Yoshida Y, Musha T, Ando S, Takai Y (1991) A novel prenyltransferase for a small GTP-binding protein having a C-terminal Cys-Ala-Cys structure. J Biol Chem 266:16981–16984PubMedGoogle Scholar
  20. Jaentzko A, Zimmermann H, Volknandt W (1989) Intraneuronal distribution of a synaptic vesicle membrane protein: antibody binding sites at axonal membrane compartments and trans-Golgi network and accumulation at nodes of ranvier. Neuroscience 32:65–77CrossRefGoogle Scholar
  21. Johnston PA, Archer BT, Robinson K, Mignery GA, Jahn R, Südhof TC (1991) Rab3A attachment to the synaptic vesicle membrane mediated by a conserved polyisoprenylated carboxy-terminal sequence. Neuron 7:101–109PubMedCrossRefGoogle Scholar
  22. Khosravi-Far R, Lutz R, Cox AD, Conroy L, Bourne JR, Sinensky M, Balch WE, Buss JE, Der CJ (1991) Isoprenoid modification of rab proteins terminating on CC or CXC motifs. Proc Natl Acad Sci USA 88:6264–6268PubMedCrossRefGoogle Scholar
  23. Kikuchi A, Yamashita T, Kawata M, Yamamoto K, Ikeda K, Tanimoto T, Takai Y (1988) Purification and characterization of a novel GTP-binding protein with a molecular weight of 24000 from bovine brain membranes. J Biol Chem 263:2897–2904PubMedGoogle Scholar
  24. Kim S, Kikuchi A, Mizoguchi A, Takai Y (1989) Intrasynaptosomal distribution of the ras, rho and smg-25A GTP-binding proteins in bovine brain. Mol Brain Res 6:167–176PubMedCrossRefGoogle Scholar
  25. Kinsella BT, Maltese WA (1992) rab GTP-binding proteins with three different carboxyl-terminal cysteine motifs are modified in vivo by 20-carbon isoprenoids. J Biol Chem 267:3940–3945PubMedGoogle Scholar
  26. Kinsella, BT, Erdman RA, Maltese WA (1991) Posttranslational modification of Ha-ras p21 by farnesyl versus geranylgeranyl isoprenoids is determined by the COOH-terminal amino acid. Proc Natl Acad Sci USA 88:8934PubMedCrossRefGoogle Scholar
  27. Matsuda K, Sakamoto C, Nakano O, Konda Y, Matozaki T, Wada K, Kasuga M, Mizoguchi A, Kikuchi A, Takai Y (1992) Distribution of smg p25A and smg p21s, ras p21-like guanine nucleotide-binding proteins, in the rat stomach. Am J Physiol 262:G69–G73PubMedGoogle Scholar
  28. Matsui Y, Kikuchi A, Kondo J, Hishida T, Teranishi Y, Takai Y (1988) Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weights of 25000 from bovine brain. J Biol Chem 263:11071–11074PubMedGoogle Scholar
  29. Matsui Y, Kikuchi A, Araki S, Hata S, Kondo J, Teranishi Y, Takai Y (1990) Molecular cloning and characterization of a novel type of regulatory protein (GDI) for smg p25A, a ras p21-like GTP-binding protein. Mol Cell Biol 10:4116–4122PubMedGoogle Scholar
  30. Matteoli M, Takei K, Cameron R, Hurlbut P, Johnston PA, Südhof TC, Jahn R, De Camilli P (1991) Association of rab3A with synaptic vesicles at late stages of the secretory pathway. J Cell Biol 115:625–633PubMedCrossRefGoogle Scholar
  31. Maycox PR, Link E, Reetz A, Morris SA, Jahn R (1992) Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling. J Cell Biol 118:1379–1388PubMedCrossRefGoogle Scholar
  32. Mizoguchi A, Kim S, Ueda T, Takai Y (1989) Tissue distribution of smgp25A, a ras p21-like GTP-binding protein, studied by use of a specific monoclonal antibody. Biochem Biophys Res Commun 162:1438–1445PubMedCrossRefGoogle Scholar
  33. Ngsee JK, Miller K, Wendland B, Scheller RH (1990) Multiple GTP-binding proteins from cholinergic synaptic vesicle. J Neurosci 10:317–322PubMedGoogle Scholar
  34. Olofsson B, Chardin P, Touchot N, Zahraoui A, Tavitian A (1988) Expression or the ras-related rallA, rhol2 and rab genes in adult mouse tissue. Oncogene 3:231–234PubMedGoogle Scholar
  35. Pfeffer SR (1992) GTP-binding proteins in intracellular transport. TICB 2:41–46Google Scholar
  36. Regnier-Vigouroux A, Tooze SA, Huttner WB (1991) Newly synthesized synaptophysin is transported to synaptic-like microvesicles via constitutive secretory vesicles and the plasma membrane. EMBO J 10:3589–3601PubMedGoogle Scholar
  37. Rothman JE, Orci L (1990) Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport. FASEB J 4:1460–1468PubMedGoogle Scholar
  38. Salminen A, Novick PJ (1987) A ras-like protein is required for a post-Golgi event in yeast. Cell 49:527–538PubMedCrossRefGoogle Scholar
  39. Sano K, Kikuchi A, Matsui Y, Teranishi Y, Takai Y (1989) Tissue-specific expression of a novel GTP-binding protein (smg p25A) mRNA and its increase by nerve growth factor and cyclic AMP in rat pheochromocytoma PC-12 cells. Biochem Biophys Res Commun 158:377–385PubMedCrossRefGoogle Scholar
  40. Sasaki T, Kikuchi A, Araki S, Hata Y, Isomura M, Kuroda S, Takai Y (1990) Purification and characterization from bovine brain cytosol of a protein that inhibits the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras p21 like GTP-binding protein. J Biol Chem 265:2333–2337PubMedGoogle Scholar
  41. Sasaki T, Kaibuchi K, Kabcenell A, Novick PJ, Takai Y (1991) A mammalian inhibitory GDP/GTP exchange protein (GDP dissociation inhibitor) for smgp25A is active on the yeast sec4 protein. Mol Cell Biol 11:2909PubMedGoogle Scholar
  42. Schnefel S, Zimmermann P, Pröfrock A, Jahn R, Aktories K, Hinsch KD, Haase W, Schulz I (1992) Multiple small and high molecular weight GTP-binding proteins in zymogen granule membranes of rat pancreatic acinar cells. Cell Physiol Biochem 2:77–89CrossRefGoogle Scholar
  43. Seabra MC, Goldstein JC, Südhof TC, Brown MS (1992) Rab Geranylgeranyl transferase: a multisubunit enzyme that prenylates GTP-binding terminating in Cys-X-Cys or Cys-Cys. J Biol Chem 267:14497–14503PubMedGoogle Scholar
  44. Smith SJ, Augustine GJ (1988) Calcium ions, active zones and synaptic transmitter release. TINS 11:458–464PubMedGoogle Scholar
  45. Südhof TC, Jahn R (1991) Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 6:665–677PubMedCrossRefGoogle Scholar
  46. Volknandt W, Pevsner J, Elferink LA, Schilling J, Scheller RH (1991) A synaptic vesicle specific GTP-binding protein from ray electric organ. Mol Brain Res 11:283–290PubMedCrossRefGoogle Scholar
  47. Zahraoui A, Touchet N, Chardin P, Tavitian A (1988) Complete coding sequences of the ras related rab 3 and 4 cDNAs. Nucleic Acid Res 16:1204PubMedCrossRefGoogle Scholar
  48. Zahraoui A, Touchet N, Chardin P, Tavitian A (1989) The human rab genes encode a family of GTP-binding proteins related to yeast YPT1 and sec4 products involved in secretion. J Biol Chem 264:12394–12401PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • G. Fischer von Mollard
  • T. C. Südhof
  • R. Jahn

There are no affiliations available

Personalised recommendations