Skip to main content

A New Look at Receptor-Mediated Activation of a G-protein

  • Chapter
Book cover GTPases in Biology I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 1))

Abstract

The intimate kinetic processes of hormonal activation of a G-proteinmediated pathway are complex and involve the interplay of a receptor with the G-protein, the activation of the G-proteins by GTP, the G-protein subunit dissociation reaction, the turnoff of the activated α subunit by its endogenous GTPase, the reassociation of the G-protein subunits, and the reversible and presumably cyclical oscillation of the receptor between a minimum of two states — one with low and the other with high affinity for the hormone. Work by Lefkowitz’s group in the late 1970s provided solid evidence that for the β-adrenergic receptor (βAR), the activation-triggering state of the receptor is the state with high agonist affinity or RH (DeLean et al. 1980; Kent et al. 1980). Work by Cassel and Selinger (1978) and later that by Michel and Lefkowitz (1982) showed that agonist stimulation accelerates an exchange reaction in which bound nucleotide, be it GDP- or GTP-like, is rapidly released from the system in an agonist-specific manner. Facilitation of guanine nucleotide binding by a receptor was confirmed with purified components in the mid 1980s (Cerione et al. 1985, 1986). This led to the now widely held concept that one role, and very likely the sole role, of the receptor is to promote nucleotide exchange at the GDP-GTP binding site, with the implicit assumption that the automatic fate of a G-protein with GTP bound to it is its activation (“self-activation”), and that consequently the receptor is not required for the activation reaction proper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birnbaumer L, Hildebrandt JD, Codina J, Mattera R, Cerione RA, Hildebrandt JD, Sunyer T, Rojas FJ, Caron MG, Lefkowitz RJ, Iyengar R (1985) Structural basis of adenylyl cyclase stimulation and inhibition by distinct guanine nucleotide regulatory proteins. In: Cohen P, Houslay MD (eds) Molecular mechanisms of signal transduction. Elsevier/North Holland, Amsterdam, pp 131–182

    Google Scholar 

  • Birnbaumer L, Abramowitz J, Brown AM (1990) Signal transduction by G proteins. Biochim Biophys Acta 1031:163–224

    PubMed  CAS  Google Scholar 

  • Camps M, Hou C, Sidiropoulos D, Stock JB, Jakobs KH, Gierschik P (1992) Stimulation of phospholipase C by guanine-nucleotide-binding protein βγ sub-units. Eur J Biochem 206:821–831

    Article  PubMed  CAS  Google Scholar 

  • Cassel D, Selinger Z (1978) Mechanism of adenylate cyclase activation through the beta=adrenergic receptor: catecholamine-induced displacement of bound GDP by GTP. Proc Natl Acad Sci USA 75:4155–4159

    Article  PubMed  CAS  Google Scholar 

  • Chabre O, Conklin BR, Lin HY, Lodish HF, Wilson E, Ives HE, Catanzariti L, Hemmings BA, Bourne HR (1992) A recombinant calcitonin receptor independently stimulates 3′,5′-cyclic adenosine monophosphate and Ca2+/inositol phosphate signaling pathways. Mol Endocrinol 6:551–556

    Article  PubMed  CAS  Google Scholar 

  • Cerione RA, Codina J, Benovic JL, Lefkowitz RJ, Birnbaumer L, Caron MG (1984) The mammalian beta2-adrenergic receptor: reconstitution of the pure receptor with the pure stimulatory nucleotide binding protein (Ns) of the adenylate cyclase system. Biochemistry 23:4519–4525

    Article  PubMed  CAS  Google Scholar 

  • Cerione RA, Staniszewski C, Benovic JL, Lefkowitz RJ, Caron MC, Gierschick P, Somers R, Spiegel AL, Codina J, Birnbaumer L (1985) Specificity of the functional interactions of the beta-adrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. J Biol Chem 260:1493–1500

    PubMed  CAS  Google Scholar 

  • Cerione RA, Regan JW, Nakata H, Codina J, Benovic JL, Gierschick P, Somers RL, Spiegel AM, Birnbaumer L, Lefkowitz RJ, Caron MG (1986) Functional reconstitution of the alpha2-adrenergic receptor with guanine nucleotide regulatory proteins in phospholipid vesicles. J Biol Chem 261:3901–3909

    PubMed  CAS  Google Scholar 

  • DeLean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255:7108–7117

    CAS  Google Scholar 

  • Florio VA, Sternweis PC (1989) Mechanism of muscarinic receptor action on G0 in reconstituted phospholipid vesicles. J Biol Chem 264:3909–3915

    PubMed  CAS  Google Scholar 

  • Gierschik P, Stisslinger M, Sidiropolous D, Herrmann E, Jakobs KH (1989) Dual Mg2+ control of formyl peptide receptor — G protein interaction in HL-60 cells. Evidence that the low agonist affinity receptor interacts with and activates the G protein. Eur J Biochem 183:97–105

    Article  PubMed  CAS  Google Scholar 

  • Gudermann T, Birnbaumer M, Birnbaumer L (1992) Evidence for dual coupling of the murine LH receptor to adenylyl cyclase and phosphoinositide breakdown/ Ca2+ mobilization. Studies with the cloned murine LH receptor expressed in L cells. J Biol Chem 267:4479–4488

    PubMed  CAS  Google Scholar 

  • Higashijima T, Ferguson KM, Smigel MD, Gilman AG (1987) The effect of GTP and Mg2+ on the GTPase activity and the fluorescent properties of G0. J Biol Chem 262:757–761

    PubMed  CAS  Google Scholar 

  • Howlett AC, Gilman AG (1980) Hydrodynamic properties of the regulatory component of adenylate cyclase. J Biol Chem 260:2861–2866

    Google Scholar 

  • Iyengar R, Abramowitz J, Bordelon-Riser ME, Birnbaumer L (1980a) Hormone receptor-mediated stimulation of adenylyl cyclase systems: nucleotide effects and analysis in terms of a two-state model for the basic receptor-affected enzyme. J Biol Chem 255:3558–3564

    PubMed  CAS  Google Scholar 

  • Iyengar R, Abramowitz J, Bordelon-Riser ME, Blume AJ, Birnbaumer L (1980b) Regulation of hormone-receptor coupling to adenylyl cyclases: effects of GTP and GDP. J Biol Chem 255:10312–10321

    PubMed  CAS  Google Scholar 

  • Kent RS, DeLean A, Lefkowitz RJ (1980) A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol Pharmacol 17:14–23

    PubMed  CAS  Google Scholar 

  • Mattera R, Pitts BJR, Entman MS, Birnbaumer L (1985) Guanine nucleotide regulation of a mammalian myocardial receptor system. Evidence for homo-and heterotropic cooperativity in ligand binding analyzed by computer assisted curve fitting. J Biol Chem 260:7410–7421

    PubMed  CAS  Google Scholar 

  • Michel T, Lefkowitz RJ (1982) Hormonal inhibition of adenylate cyclase. Alpha2-adrenergic receptors promote release of [3H]Guanylylimidodiphosphate from platelet membrane. J Biol Chem 257:13557–13563

    PubMed  CAS  Google Scholar 

  • Northup JK, Sternweis PC, Gilman AG (1983a) The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution, activity and properties of the 35,000 dalton (beta) subunit. J Biol Chem 258:11361–11368

    PubMed  CAS  Google Scholar 

  • Northup JK, Smigel MD, Sternweis PC, Gilman AG (1983b) The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton (alpha) subunit. J Biol Chem 258:11369–11376

    PubMed  CAS  Google Scholar 

  • Phillips WJ, Cerione RA (1992) Rhodopsin/transducin interactions: I. Characterization of the binding of the transducin-βγ subunit complex to rhodopsin using fluorescence spectroscopy. J Biol Chem 267:17032–17039

    PubMed  CAS  Google Scholar 

  • Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwatra MM, Caron MG, Lefkowitz RJ (1992) Role of βγ subunits of G proteins in targeting of the β-adrenergic receptor kinase to membrane-bound receptors. Science 257:1264–1267

    Article  PubMed  CAS  Google Scholar 

  • Rodbell M, Krans HMJ, Pohl SL, Birnbaumer L (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver: IV. Binding of glucagon: effect of guanyl nucleotides. J Biol Chem 246:1872–1876

    PubMed  CAS  Google Scholar 

  • Rojas FJ, Birnbaumer L (1985) Regulation of glucagon receptor binding. Lack of effect of Mg and preferential role for GDP. J Biol Chem 260:7829–7835

    PubMed  CAS  Google Scholar 

  • Taguchi M, Field JB (1988) Effects of thyroid-stimulating hormone, carbachol, norepinephrine, and adenosine 3′,5′-monophosphate on polyphosphatidylinositol phosphate hydrolysis in dog thyroid slices. Endocrinology 123:2019–2026

    Article  PubMed  CAS  Google Scholar 

  • Tolkovsky AM, Levitzki A (1978) Mode of coupling between the ß-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 17:3795–3810

    Article  PubMed  CAS  Google Scholar 

  • VanSande J, Raspe E, Perret J, Lejeune C, Manhaut C, Vassart G, Dumont JE (1990) Thyrotropin activates both the cAMP and the PIP2 cascade in CHO cells expressing the human cDNA of the TSH receptor. Mol Cell Endocrinol 74:R1–R6

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birnbaumer, L. (1993). A New Look at Receptor-Mediated Activation of a G-protein. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology I. Handbook of Experimental Pharmacology, vol 108 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78267-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78267-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78269-5

  • Online ISBN: 978-3-642-78267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics