Skip to main content

GTPases Everywhere!

  • Chapter
GTPases in Biology I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 1))

Abstract

Everywhere we look in biology, GTPases abound. Although the first examples appeared in apparently unrelated contexts — protein synthesis, cancer, hormone action, vision — we now recognize GTPases as members of a large superfamily, encoded by genes apparently descended from a single progenitor. The ability of a primordial GTPase to oscillate between GTP-and GDP-bound conformations furnished an opportunity for evolution to elaborate a diverse and versatile panoply of regulatory switches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353: 668–670

    Article  PubMed  CAS  Google Scholar 

  • Arshavsky VY, Bownds MD (1992) Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature 357:416–417

    Article  PubMed  Google Scholar 

  • Berstein G, Blank JL, Jhon DY, Exton JH, Rhee SG, Ross EM (1992) Phospholi-pase C-β1 is a GTPase activating protein (GAP) for Gq/11, its physiologic regulator, Cell 70:411–418

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR (1988) Do GTPases direct membrane traffic in secretion? Cell 53:669–671

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Stryer L (1992) The target set the tempo. Nature 358:541–543

    Article  PubMed  CAS  Google Scholar 

  • Chant J, Corrado K, Pringle JR, Herskowitz I (1991) Yeast BUD5, encoding a putative GDP-GTP exchange factor, is necessary for bud site selection and interacts with bud formation gene BEM1. Cell 65:1213–1224

    Article  PubMed  CAS  Google Scholar 

  • Chant J, Herskowitz I (1991) Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 65:1203–1212

    Article  PubMed  CAS  Google Scholar 

  • Clark RA (1990) The human neutrophil respiratory burst oxidase. J Infect Dis 161:1140–1147

    Article  PubMed  CAS  Google Scholar 

  • Dholakia JN, Wahba AJ (1989) Mechanism of the nucleotide exchange reaction in eukaryotic polypeptide chain initiation. Characterization of the guanine nucleotide exchange factor as a GTP-binding protein. J Biol Chem 264:546–550

    PubMed  CAS  Google Scholar 

  • Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C, Hall C, Lim L, Hall A (1991) Bcr encodes a GTPase-activating protein for p21rac. Nature 351:400–402

    Article  PubMed  CAS  Google Scholar 

  • Franke RR, König B, Sakmar TP, Khorana HG, Hofmann KP (1990) Rhodopsin mutants that bind but fail to activate transducin. Science 250:123–125

    Article  PubMed  CAS  Google Scholar 

  • Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254:1512–1515

    Article  PubMed  CAS  Google Scholar 

  • Kroll S, Phillips WJ, Cerione RA (1989) The regulation of the cyclic GMR phosphodiesterase by the GDP-bound form of the a subunit of transducin. J Biol Chem 264:4490–4497

    PubMed  CAS  Google Scholar 

  • Mizuno T, Kaibuchi K, Ando S, Musha T, Hiraoka K, Takaishi K, Asada M, Nunoi H, Matsuda I, Takai Y (1992) Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J Biol Chem 267:10215–10218

    PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  PubMed  CAS  Google Scholar 

  • Settleman J, Narasimhan V, Foster LC, Weinberg RA (1992) Molecular cloning of cDNAs encoding the GAP-associated protein p190: implications for a signaling pathway from ras to the nucleus. Cell 69:539–549

    Article  PubMed  CAS  Google Scholar 

  • Valencia A, Kjeldgaard M, Pai EF, Sander C (1991) GTPase domains of ras p21 oncogene protein and elongation factor Tu: analysis of three-dimensional structures, sequence families, and functional sites. Proc Natl Acad Sci USA 88: 5443–5447

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bourne, H.R. (1993). GTPases Everywhere!. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology I. Handbook of Experimental Pharmacology, vol 108 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78267-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78267-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78269-5

  • Online ISBN: 978-3-642-78267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics