Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 19))

Abstract

Ion channel proteins constitute the basis for all electrical communication and signaling in both excitable and nonexcitable cells. Not only are they the conduit-effectors of ion currents which generate transmembrane voltage changes, but they must also serve receptor-like functions. They should be able to record and compute changes in voltage and detect internal and/or external ligands and their respective electrochemical modifications during ionic flow. Phenomenologically, therefore, ion channels are not passive conduits, but are active, intricately constructed membrane proteins involved in the dynamic physiology of an organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarado R, Crane RK (1962) Phlorizin as a competitive inhibitor of the active transport of sugars by hamster small intestine in vitro. Biochim Biophys Acta 52: 170–172

    Article  Google Scholar 

  • Armstrong W McD (1975) Electrophysiology of sodium transport by epithelial cells of the small intestine. In: Csaky TZ (ed) Intestinal absorption and malabsorption. Raven, New York, pp 45–66

    Google Scholar 

  • Armstrong W McD, Wojtkowski W, Bixenman WR (1977) A new solid-state microelectrode for measuring intracellular chloride activities. Biochim Biophys Acta 465: 165–170

    Article  PubMed  CAS  Google Scholar 

  • Armstrong W McD, Bixenman WR, Frey KF, Garcia-Diaz JF, O’Regan MG, Owens JH (1979a) Energetics of coupled Na+ and Cl entry into epithelial cells of bullfrog small intestine. Biochim Biophys Acta 551: 207–219.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong W McD, Garcia-Diaz JF, O’Doherty J, O’Regan MG (1979b) Transmucosal Na+ electrochemical potential difference and solute accumulation in epithelial cells of the small intestine. Fed Proc 38: 2722–2728

    PubMed  CAS  Google Scholar 

  • Barry RJC, Smyth DH, Wright EM (1965) Short-circuit current and solute transfer by rat jejunum, J Physiol (Lond) 181: 410–431

    CAS  Google Scholar 

  • Bjarnason JB, Tu AT (1978) Hemorrhagic toxins from western diamondback rattlesnake (Crotalus atrox) venom: isolation and characterization of five toxins and the role of zinc in hemorrhagic toxine. Biochemistry 17: 3395–3404

    Article  PubMed  CAS  Google Scholar 

  • Chesnoy-Marchais D, Evans MG (1986) Chloride channels activated by hyperpolarization in Aplysia neurons. Pfluegers Arch Eu J Physiol 407 (6): 694–696

    Article  CAS  Google Scholar 

  • Finkel AS (1983) A cholinergic chloride conductance in neurons of Helix aspersa. J Physiol (Lond) 344: 119–136

    Google Scholar 

  • Fossier P, Baux G, Tauc L (1986) Faseiculin II a protein inhibitor of acetylcholinesterase tested on central synapses of Aplysia californica. Cell Mol Neurobiol 6(2): 221–225

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA, Dugas M, Schultz SG (1975) Sodium chloride transport by rabbit gallbladder: direct evidence for a coupled NaCl influx process. J Gen Physiol 65: 769–795

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA, Field M, Schultz SG (1979) Sodium-coupled chloride transport by epithelial tissues. Am J Physiol 236: F1-F8

    PubMed  CAS  Google Scholar 

  • Fromter E, Gebler B (1977) Electrical properties of amphibian urinary bladder. III. The cell membrane resistance and the effect of amiloride. Pfluegers Arch Eur J Physiol 371: 99–108

    Article  CAS  Google Scholar 

  • Fuchs W, Larsen EH, Lindemann B (1977) Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J Physiol (Lond) 267: 137–166

    CAS  Google Scholar 

  • Geletyuk VI, Kazachenko VN (1985) Single chloride channels in molluscan neurons: multiplicity of the conductance states. J Membr Biol 86 (1): 6–16

    Google Scholar 

  • Gerencser GA (1978a) Enhancement of sodium and chloride transport by monosaccharides in Aplysia californica intestine. Comp Biochem Physiol 61 A: 203–208

    Google Scholar 

  • Gerencser GA (1978b) Electrical characteristics of isolated Aplysia ca/i/ormc intestine. Comp Biochem Physiol 61A: 209–212

    Article  Google Scholar 

  • Gerencser GA (1979a) Metabolic dependence of active sulfate transport in Aplysia californica intestine. Comp Biochem Physiol 63A: 519–522

    Article  CAS  Google Scholar 

  • Gerencser GA (1979b) Stimulation of sulfate transport by exogenous sugars in Aplysia californica intestine. Comp Biochem Physiol 64A: 251–255

    Article  CAS  Google Scholar 

  • Gerencser GA (1981a) Effects of amino acids on chloride transport in Aplysia intestine. Am J Physiol 240: R61-R69

    PubMed  CAS  Google Scholar 

  • Gerencser GA (1981b) Electrical transport characteristics of Aplysia californica intestinal epithelium. Comp Biochem Physiol 68A: 225–230

    Article  Google Scholar 

  • Gerencser GA (1981c) Review: intestinal potentials. Comp Biochem Physiol 69A: 15–21

    Article  CAS  Google Scholar 

  • Gerencser GA (1982) Membrane physiology of molluscs. In: Podesta RB, Timmers SF (eds) Membrane physiology of invertebrates. Marcel Dekker, New York

    Google Scholar 

  • Gerencser GA (1983) Electrophysiology of chloride transport in Aplysia (mollusk) intestine. Am J Physiol 244: R143-R149

    PubMed  CAS  Google Scholar 

  • Gerencser GA (1984a) Thiocyanate inhibition of active chloride absorption in Aplysia intestine. Biochim Biophys Acta 775: 389–394

    Article  PubMed  CAS  Google Scholar 

  • Gerencser GA (1984b) Electrogenic and electrically coupled chloride transport across molluscan intestine. In: Gerencser GA (ed) Chloride transport coupling in biological membranes and epithelia. Elsevier, Amsterdam, pp 183–203

    Google Scholar 

  • Gerencser GA (1984c) Concentrations and activity coefficients of Na+, K+ and Cl in Aplysia californica enterocytes. Comp Biochem Physiol 77A: 717–720

    Article  CAS  Google Scholar 

  • Gerencser GA (1984d) Inhibition of epithelial chloride channels by a semi-purified fraction of Crotalus atrox venom. Proc Soc Exp Biol Med 175: 295–298

    PubMed  CAS  Google Scholar 

  • Gerencser GA (1984e) Modifiers of active chloride transport across Aplysia californica intestine. Comp Biochem Physiol 78A: 607–611

    Article  CAS  Google Scholar 

  • Gerencser GA, Hong SK (1977) Ion transport in Aplysia Juliana intestine: stimulation by exogenous sugars. Comp Biochem Physiol 58A: 275–280

    Article  Google Scholar 

  • Gerencser GA, Tu AT (1977) Effect of Crotalas atrox venom on sodium transport across the frog skin. Proc Soc Exp Biol Med 156: 104–108

    PubMed  CAS  Google Scholar 

  • Gerencser GA, White JF (1980) Membrane potentials and chloride activities in epithelial cells of Aplysia intestine. Am J Physiol 239: R445-R449

    PubMed  CAS  Google Scholar 

  • Gerencser GA, Hond SK, Malvin G (1977) Metabolic dependence of transmural potential difference and short-circuit current in isolated Aplysia Juliana intestine. Comp Biochem Physiol 56A: 519–523

    Article  Google Scholar 

  • Gerencser GA, Macintosh BR, Posner P (1981) Effect of a semipurified fraction of Crotalus atrox (Western diamondback rattlesnake) venom on chloride transport across the frog skin. Toxicon 18: 671–674

    Article  Google Scholar 

  • Hasimoto T, Kobayashi M (1981) A double sucrose gap method for recording electrical activity of muscle cells. Zool Mag (Toyko) 90(3): 390–393

    Google Scholar 

  • Ikemoto Y, Akaike N, Ono K (1987) 4 aminopyridine activates a cholinergic chloride conductance in isolated Helix neurons. Neurosci Lett 76 (1): 42–46

    CAS  Google Scholar 

  • Ikemoto Y, Akaike N, Kijima H (1988) Kinetic and pharmacological properties of the GABA- induced chloride current in Aplysia neurons: a concentration clamp study. Br J Pharmacol 95(3): 883–895

    PubMed  CAS  Google Scholar 

  • Inoue I (1985) Voltage-dependent chloride conductance of the squid Sepioteuthis lessoniana axon membrane and its blockade by some disulfonic stilbene derivatives. J Gen Physiol 85(4): 519–538

    Article  PubMed  CAS  Google Scholar 

  • Inoue I (1988) Anion conductances of the giant axon of squid Sepioteuthis. Biophys J 54(3): 489–494

    Article  PubMed  CAS  Google Scholar 

  • Khalsa SBS, Ralph MR, Block GD (1990) Chloride conductance contributes to period determination of a neuronal circadian pacemaker. Brain Res 520(1–2): 166–169

    Article  PubMed  CAS  Google Scholar 

  • King WM, Carpenter DO (1987) Distinct GAB A and glutamate receptors may share a common channel in Aplysia neurons. Neurosci Lett 82(3): 343–348

    Article  PubMed  CAS  Google Scholar 

  • Lerner J (1978) Ion dependency of transport. In: Lerner J (ed) A review of amino acid transport processes in animal cells and tissues. Univ Maine Orono Press, Orono

    Google Scholar 

  • Lotshaw DP, Levitan IB (1987) Serotonin and forskolin modulation of a chloride conductance in cultured identified Aplysia neurons. J Neurophysiol 58(5): 922–939

    PubMed  CAS  Google Scholar 

  • Matsumoto M (1982) The voltage-dependent nature of the gamma amino butyric-acid induced conductance change recorded from the ganglion cell of Aplysia kurodai. Jpn J Physiol 32(1): 55–68

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin JT, Hawrot E (1989) Structural characterization of alpha bungarotoxin-binding proteins from Aplysia californica. Mol Pharmacol 35(5): 593–598

    PubMed  CAS  Google Scholar 

  • Nellans HN, Frizzell RA, Schultz SG (1973) Coupled sodium-chloride influx across the brush border of rabbit ileum. Am J Physiol 225: 467–475

    PubMed  CAS  Google Scholar 

  • Oyama Y, Ikemoto Y, Kits KS, Akaike N (1990) GABA affects the glutamate receptor- chloride channel complex in mechanically isolated and internally perfused Aplysia neurons. Eur J Pharmacol 185(1): 43–52

    Article  PubMed  CAS  Google Scholar 

  • Pellmar TC, Wilson WA (1977) Synaptic mechanism of pentylene tetrazole selectivity for chloride conductance. Science 187(4306) 912–914

    Article  Google Scholar 

  • Quay JF, Armstrong W McD (1969a) Sodium and chloride transport by isolated bullfrog small intestine. Am J Physiol 217: 694–702

    CAS  Google Scholar 

  • Quay JF, Armstrong W McD (1969b) Enhancement of net sodium transport in isolated bullfrog intestine by sugars and amino acids. Proc Soc Exp Biol Med 131: 51–64

    Google Scholar 

  • Rose RC, Schultz SG (1970) Sugar and amino acid effects on the electrical potential profile across rabbit ileum. Biochim Biophys Acta 211: 376–378

    Article  CAS  Google Scholar 

  • Sawada M, Hara N, Ito I, Maeno T (1984) Ionic mechanism of a hyperpolarizing glutamate effect on 2 identified neurons in the buccal ganglion of Aplysia kurodai. J Neurosci Res 11(1): 91–104

    Article  PubMed  CAS  Google Scholar 

  • Scappaticci KA, Dretchen KL, Carpenter DO, Pellmar TC (1981) Effects of furosemide on neural mechanisms in Aplysia californica. J Neurobiol 12(4): 329–342

    Article  PubMed  CAS  Google Scholar 

  • Schultz SG (1977) Sodium-coupled solute transport by small intestine: a status report. Am J Physiol 223: E249-E254

    Google Scholar 

  • Schultz SG, Curran PF (1968) Intestinal absorption of sodium chloride and water. In: Code CF, Heidel W (eds) Handbook of physiology: alimentary canal, Sect 6, Vol III, Am Physiol Soc, Washington DC, pp 1245–1275

    Google Scholar 

  • Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50: 637–718

    PubMed  CAS  Google Scholar 

  • Simonneau M, Tauc L, Baux G (1980) Quantal release of acetyl choline examined by current fluctuation analysis in an identified neuro neuronal synapse of Aplysia. Proc Natl Acad Sci USA 77(3): 1661–1665

    Article  PubMed  CAS  Google Scholar 

  • Skou JC (1965) Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 45: 596–617

    PubMed  CAS  Google Scholar 

  • Sudou K, Hoshi T (1977) Mode of action of amiloride in toad urinary bladder. J Membr Biol 32: 115–132

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Watanabe K, Tamura H (1978) Penetrable and impenetrable anions into the gamma amino butyric-acid activated chloride channel on the postsynaptic neuromembrane of an identifiable giant neuron of an African giant snail Achatina fulica. Comp Biochem Physiol C Comp Pharmacol 61(2): 309–316

    Article  Google Scholar 

  • White JF, Armstrong W McD (1971) Effect of transported solutes on membrane potentials in bullfrog small intestine. Am J Physiol 22: 194–201

    Google Scholar 

  • White MW, Miller C (1979) A voltage-gated anion channel from the electric organ of Torpedo californica. J Biol Chem 254(20): 10161–10166

    PubMed  CAS  Google Scholar 

  • Yamagishi S, Furuya K, Kuita F (1989) Increase in chloride conductance by intracellularly added calcium ion or other perfusates in squid giant axons. 66th Annual Meeting of the Physiological Society of Japan, S61

    Google Scholar 

  • Okayama Yamagishi S, Tsutsui I, Furuya K, Kukita F (1990) Calcium activated chloride conductance in squid giant axons. 67th Annual Meeting of the Physiological Society of Japan, S105 Miyazaki

    Google Scholar 

  • Zeuthen T, Ramos TM, Ellory JC (1978) Inhibition of active chloride transport by piretanide. Nature (Lond) 273: 678–680

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerencser, G.A. (1994). Chloride Channels in Molluscs. In: Gerencser, G.A. (eds) Electrogenic Cl Transporters in Biological Membranes. Advances in Comparative and Environmental Physiology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78261-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78261-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78263-3

  • Online ISBN: 978-3-642-78261-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics