Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 19))

Abstract

Intracellular Cl concentration ([Cl]i) is an essential factor in the regulation of neuronal excitability through receptor-operated Cl channels (Alger 1985; Barker 1985). Evidence for chloride activities higher or lower than those expected from a passive distribution (Alvarez-Leefmans 1990) has suggested the presence of inwardly or outwardly directed active Cl transport mechanisms. In neurons, uphill accumulation of Cl is known to be mediated by Na+/K+/Cl co-transporters in both invertebrate and vertebrate neurons (Russell 1983; Ballanyi and Grafe 1985; Alvarez-Leefmans et al. 1988). However, the mechanisms underlying the outwardly directed Cl transport have not been fully elucidated. Thompson et al. (1988a, b) and Thompson and Gahwiler (1989a, b) have suggested that active Cl extrusion from mammalian cortical neurons is mediated by outwardly directed Cl/cation co-transport mechanism. On the other hand, neuronal Cl-stimulated ATPase acting as an ATP-driven Cl pump has also been a candidate for such an outwardly directed Cl transport system (Inagaki et al. 1985, 1987; Inagaki and Shiroya 1988; Shiroya et al. 1989b; Inoue et al. 1991a; Hara et al. 1992). We report in this chapter on the Cl stimulated ATPase which outwardly transports Cl across neuronal plasma membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alger BE (1985) GABA and glycine. In: Rogawski MA, Barker JL (eds) Neurotransmitter actions in the vertebrate nervous system. Plenum, New York, pp 33–69

    Google Scholar 

  • Alger BE, Nicoll RA (1982) Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol 328: 125–141

    PubMed  CAS  Google Scholar 

  • Alvarez-Leefmans FJ (1990) Intracellular Cl regulation and synaptic inhibition vertebrate and invertebrate neurons. In: Alverez-Leefmans FJ, Russell JM (eds) Chloride channels and carriers in nerve, muscle and glia cells. Plenum, New York, pp 109–158

    Google Scholar 

  • Alvarez-Leefmans FJ, Gamino SM, Giraldez F, Nogueron I (1988) Intracellular chloride regulation in amphibian dorsal root ganglion neurons studied with ion-selective micro- electrodes. J Physiol (Lond) 406: 225–246

    CAS  Google Scholar 

  • Andersen P, Dingledine R, Gjerstad L, Langmoen I A, Laursen A (1980) Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid. J Physiol 305: 279–296

    PubMed  CAS  Google Scholar 

  • Ballanyi K, Gräfe P (1985) An intracellular analysis of y-amino-butyric acid-associated ion-movement in rat sympathetic neurons. J Physiol (Lond) 365: 41–58

    CAS  Google Scholar 

  • Barker JL (1985) GABA and glycine: ion channel mechanisms. In: Rogawski MA, Barker JL (ed) Neurotransmitter actions in the vertebrate nervous system. Plenum, New York, pp 71–100

    Google Scholar 

  • Chen P-Y, Verkman AS (1988) Sodium-dependent chloride transport in basolateral membrane vesicles isolated from rabbit proximal tubules. Biochemistry 27: 655–660

    Article  PubMed  CAS  Google Scholar 

  • Cidon S, Ben-David H, Nelson N (1983) ATP-driven proton fluxes across membranes of secretory organelles. J Biol Chem 258: 11684–11688

    PubMed  CAS  Google Scholar 

  • De Pont JJHHM, Bonting SL (1981) Anion-sensitive ATPase and (K+ + H+)-ATPase. In: Bonting SL, De Pont JJHHM (eds) Membrane transport. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 209–234

    Google Scholar 

  • Ebel RE, Lardy HA (1975) Stimulation of rat liver mitochondrial adenosine triphosphatase by anions. J Biol Chem 250: 191–196

    PubMed  CAS  Google Scholar 

  • Fukunaga R, Inagaki C (1989) ATP-dependent H+ transport in synaptosomal membrane vesicles of the rat brain. Biochim Biophys Res Commun 159: 1045–1050

    Article  CAS  Google Scholar 

  • Garay RP, Hannaert PA, Nazaret C, Cragoe EJ Jr (1986) The significance of the relative effects of loop diuretics and anti-brain edema agents on the Na+, K+, Cl cotransport system and the Cl/NaCO3 anion exchanger. Naunyn-Schmiedebergs Arch Pharmacol 334: 202–209

    Article  PubMed  CAS  Google Scholar 

  • Gerencser GA, Lee SH (1983) Cl-stimulated adenosine triphosphatase: existence, location and function. J Exp Biol 106: 143–161

    PubMed  CAS  Google Scholar 

  • Gerencser GA, White JF, Gradmann D, Bonting SL (1988) Is there a Cl pump? Am J Physiol 24: R677-R692

    Google Scholar 

  • Goldman SS, Albers RW (1973) Sodium-potassium-activated adenosine triphosphatase. J Biol Chem 248: 867–874

    PubMed  CAS  Google Scholar 

  • Gradmann D (1984) Electrogenic Cl pump in the marine algae Acetabularia. In: Gerencser GA (ed) Chloride transport coupling in biological membranes and epithelia. Elsevier, Amsterdam, pp 13–62

    Google Scholar 

  • Greger R, Wangemann P (1987) Loop diuretics. Renal Physiol 10: 174–183

    CAS  Google Scholar 

  • Hara M, Fujiwara M, Inagaki C (1982a) Non-mitochondrial origin of ethacrynic acid high- sensitive Mg2+-ATPase activity in microsomal fractions from rabbit cortical gray matter. Biochem Pharmacol 31: 4077–4079

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Miwa S, Fujiwara M, Inagaki C (1982b) Effects of several anions on ethacrynic acid- high and low-sensitive Mg-ATPase activities in microsomal fractions from rabbit cortical gray matter. Biochem Pharmacol 31: 877–879

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Inoue M, Yasukura T, Ohnishi S, Mikami Y, Inagaki C (1992) Uneven distribution of intracellular Cl in rat hippocampal neurons. Neurosci Lett 143: 135–138

    Article  PubMed  CAS  Google Scholar 

  • Hill BS (1984) Metabolic coupling of chloride transport in higher plants. In: Gerencser GA (ed) Chloride transport coupling in biological membranes and epithelia. Elsevier, Amsterdam, PP 1–11

    Google Scholar 

  • Hill BS, Hanke DE (1979) Properties of the chloride ATPase from Limonium salt glands: activation by, and binding to, specific sugars. J Membr Biol 51: 185–194

    Article  PubMed  CAS  Google Scholar 

  • Hokin LE, Hexum TD (1972) Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. Arch Biochem Biophys 151: 453–463

    Article  PubMed  CAS  Google Scholar 

  • Humphrey MH, Chou LYN (1979) Anion stimulated ATPase activity of brush border from rat small intestine. Am J Physiol 236: E70-E76

    Google Scholar 

  • Ikeda M, Oesterhelt D (1990) A Cl-translocating adenosinetriphosphatase in Acetabularia acetabulum. Reconstitution of the enzyme into liposomes and effect of net charges of liposomes on chloride permeability and reconstitution. Biochemistry 29: 2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Inagaki C, Shiroya T (1988) ATP-dependent Cl uptake by plasma membrane vesicles from the rat brain. Biochem Biophys Res Commun 154: 108–112

    Article  PubMed  CAS  Google Scholar 

  • Inagaki C, Tanaka T, Hara M, Ishiko J (1985) Novel microsomal anion-sensitive Mg2+-ATPase activity in rat brain. Biochem Pharmacol 34: 1705–1712

    Article  PubMed  CAS  Google Scholar 

  • Inagaki C, Oda W, Kondo K, Kusumi M (1987) Histochemical demonstration of Cl-ATPase in rat spinal motoneurons. Brain Res 419: 375–378

    Article  PubMed  CAS  Google Scholar 

  • Inagaki C, Hara M, Inoue M (1992) Neuronal intracellular chloride ion concentrations and their regulatory mechanisms. Folia Pharmacol Jpn 99: 307–315

    Article  CAS  Google Scholar 

  • Inoue M, Uriu T, Otani H, Hara M, Omori K, Inagaki C (1989) Intracerebroventricular injection of ethacrynic acid induces status epilepticus. Eur J Pharmacol 166: 101–106

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Hara M, Zeng X-T, Hirose T, Ohnishi S, Yasukura T, Uriu T, Omori K, Minato A, Inagaki C (1991a) An ATP-driven Cl pump regulates Cl concentrations in rat hippo- campal neurons. Neurosci Lett 134: 75–78

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Hirose T, Inagaki C (1991b) Ethacrynic acid-induced glutamate release from mouse brain synaptosomes. Brain Res 543: 160–162

    Article  PubMed  CAS  Google Scholar 

  • Izutsu KT, Madden PR, Watson EL, Siegel IA (1977) Properties of HCO3-stimulated Mg2+-ATPase activity in red cell membranes. Pflügers Arch 369: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Kepner GR, Macey RI (1968) Membrane enzyme systems. Molecular size determinations by radiation inactivation. Biochim Biophys Acta 163: 188–203

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK, Bourke RS (1973) Properties and localization of bicarbonate-stimulated ATPase activity in rat brain. J. Neurochem 20: 347–359

    Article  PubMed  CAS  Google Scholar 

  • Kinne R, Hannafin JA, Koning B (1985) Role of the NaCl-KCl cotransport system in active chloride absorption and secretion. Ann NY Acad Sci 456: 198–206

    Article  PubMed  CAS  Google Scholar 

  • Kinne-Saffran E, Kinne R (1979) Further evidence for the existence of an intrinsic bicarbonate- stimulated Mg2+-ATPase in brush border membranes isolated from rat kidney cortex. J Membr Biol 49: 235–251

    Article  PubMed  CAS  Google Scholar 

  • Kunugi Y, Hashimoto Y, Tamura A, Fujii T, Inagaki C (1988) Effects of phospholipases on ClATPase in the rat brain. Neurosci Lett 92: 315–320

    Article  PubMed  CAS  Google Scholar 

  • Kunugi Y, Hiraoka Y, Hashimoto Y, Taniguchi T, Inagaki C (1991) Ethacrynic acid-sensitive and ATP-dependent Cl transport in rat kidney. Jpn J Pharmacol 57: 167–174

    Article  PubMed  CAS  Google Scholar 

  • Kunugi-Uehara Y, Hashimoto Y, Ogura C, Inagaki C, Nishino T (1988) Proteolytic digestion of Cl-ATPase in rat brain synaptosomes. Cell Struct Funct 13: 105–111

    Article  PubMed  CAS  Google Scholar 

  • Lambeth DO, Lardy HA (!971) Purification and properties of rat-liver mitochondrial adenosine triphosphatase. Eur J Biochem 22: 355–363

    Google Scholar 

  • Lanyi JK (1986) Halorhodopsin: a light-driven chloride ion pump. Annu Rev Biophys Chem 15: 11–28

    Article  CAS  Google Scholar 

  • London RD, Lipkowitz MS, Abramson RG (1987) CP/HCOJ antiporter in red cell ghosts: a kinetic assessment with fluorescent probes. Am J Physiol 252: F844-F855

    PubMed  CAS  Google Scholar 

  • Lorenson MY, Lee YC, Jacob LS (1981) Identification and characterization of an anion- sensitive Mg2+-ATPase in pituitary secretory granule membranes. J Biol Chem 256: 12802–12810

    PubMed  CAS  Google Scholar 

  • Mandersloot JG, Roelofsen B, Gier J (1978) Phosphatidylinositol as the endogenous activator of the (Na+ + K+)-ATPase in microsomes of rabbit kidney. Biochim Biophys Acta 508: 478–485

    Article  PubMed  CAS  Google Scholar 

  • Misgeld U, Deisz RA, Dodt HU, Lux HD (1986) The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science 232: 1413–1415

    Article  PubMed  CAS  Google Scholar 

  • Oda W, Kunugi Y, Inagaki C (1984) Effects of anions and inhibitors of Cl-ATPase on the membrane potential of rat brain synaptosomes. Jpn J Pharmacol 40: 94P

    Google Scholar 

  • Ottolenghi P, Ellory JC (1983) Radiation inactivation of (Na, K)-ATPase, an enzyme showing multiple radiation-sensitive domains. J Biol Chem 258: 14895–14907

    PubMed  CAS  Google Scholar 

  • Pazole CJ, Creuts CE, Ramu A, Pollard HB (1980) Permeant anion activation of Mg-ATPase activity in chromaffin granules. J Biol Chem 255: 7863–7869

    Google Scholar 

  • Peerce BE, Smolka A, Sachs G (1984) Isolation of pepsinogen granules from rabbit gastric mucosa. J Biol Chem 259: 9255–9262

    PubMed  CAS  Google Scholar 

  • Rothlein JE, Parsons SM (1982) Origin of the bicarbonate stimulation of Torpedo electric organ synaptic vesicle ATPase. J Neurochem 39: 1660–1668

    Article  PubMed  CAS  Google Scholar 

  • Russell JM (1983) Cation-coupled chloride influx in squid axon: role of potassium and stoichiometry of the transport process. J Gen Physiol 81: 909–925

    Article  PubMed  CAS  Google Scholar 

  • Sachs G, Chang HH, Rabon E, Schackman R, Lewin M, Saccomani G (1976) A non- electrogenic H+ pump in plasma membranes of hog stomach. J Biol Chem 251: 7690–7698

    PubMed  CAS  Google Scholar 

  • Schrijen JJ, Luyben WAHM, De Pont JJHHM, Bonting SL (1980) Studies on (K+, H+)- ATPase. I. Essential arginine residue in its substrate binding center. Biochim Biophys Acta 597: 331–344

    Article  PubMed  CAS  Google Scholar 

  • Schrijen JJ, Van Groningen-Luyben WAHM, Nauta H, De Pont JJHHM, Bonting SL (1983) Studies on (H++ K+)-ATPase: VI Determination of molecular size by radiation inactivation analysis. Biochim Biophys Acta 731: 329–337

    Article  PubMed  CAS  Google Scholar 

  • Schuurmans Stekhoven F, Bonting SL (1981) Transport adenosine-triphosphatases: properties and functions. Physiol Rev 61: 1–76

    PubMed  CAS  Google Scholar 

  • Shiroya T, Cragoe EJ, Inagaki C (1989a) ATP-dependent and DCCD-insensitive CP uptake in rat brain plasma membrane fractions. Biochem Biophys Res Commun 160: 469–473

    Article  PubMed  CAS  Google Scholar 

  • Shiroya T, Fukunaga R, Akashi K, Shimada N, Takagi Y, Nishino T, Hara M, Inagaki C (1989b) An ATP-driven CP pump in the brain. J Biol Chem 264: 17416–17421

    PubMed  CAS  Google Scholar 

  • Singh J (1984) Effects of acetylcholine and caerulein on 86Rb+ efflux in the mouse. Evidence for a sodium-potassium-chloride cotransport system. Biochim Biophys Acta 775: 77–85

    Article  PubMed  CAS  Google Scholar 

  • Skou JC (1965) Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol Rev 45: 596–617

    PubMed  CAS  Google Scholar 

  • Stone DK, Xie K-S, Racker E (1984) Inhibition of elathrine-coated vesicle acidification by duramycin. J Biol Chem 259: 2701–2703

    PubMed  CAS  Google Scholar 

  • Tanaka T, Inagaki C, Matsuda K, Takaori S (1986) Characteristics of ethacrynic acid highly sensitive Mg2+-ATPase in microsomal fractions of the rat brain: functional molecular size, inhibition by SITS and stimulation by CP. Jpn J Pharmacol 42: 351–359

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Inagaki C, Takaori S (1987) Solubilization and separation of ethacrynic acid (EA) highly sensitive and EA less sensitive Mg2+-ATPases in the rat brain. Jpn J Pharmacol 43: 205–212

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi K, Tonomura Y (1971) Inactivation of Na+-K+-dependent ATPase by phospho-lipase-treatment and its reactivation by phospholipids. J Biochem 69: 543–557

    PubMed  CAS  Google Scholar 

  • Thompson SM, Gahwiler BH (1989a) Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. J Neuro- physiol 61: 501–511

    CAS  Google Scholar 

  • Thompson SM, Gahwiler BH (1989b) Activity-dependent disinhibition. II. Effects of extracellular potassium, furosemide, and membrane potential on Ecl- in hippocampal CA3 neurons. J Neurophysiol 60: 512–523

    Google Scholar 

  • Thompson SM, Deisz RA, Prince DA (1988a) Outward chloride/cation cotransport in mammalian cortical neurons. Neurosci Lett 89: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Thompson SM, Deisz RA, Prince DA (1988b) Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons. J Neurophysiol 60: 105–124

    PubMed  CAS  Google Scholar 

  • Verkman AS (1990) Development and biological applications of chloride-sensitive fluorescent indicators. Am J Physiol 259: C375-C388

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Inagaki, C., Hara, M., Inoue, M. (1994). Transporting Cl-ATPase in Rat Brain. In: Gerencser, G.A. (eds) Electrogenic Cl Transporters in Biological Membranes. Advances in Comparative and Environmental Physiology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78261-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78261-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78263-3

  • Online ISBN: 978-3-642-78261-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics