Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 19))

  • 61 Accesses

Abstract

It is generally accepted that the outer membrane of eukaryotic cells operates a P-type ATPase, i.e., an ATPase which is temporarily phosphorylated during the enzymatic reaction cycle (Pedersen and Carafoli 1987). The characteristic inhibition of these ATPases by vanadate is consequently understood as competition for the phosphate binding site. The intact catalytic entity in the native membrane is a homodimer with phosphohydrolytic subunits of about 100 kDa. There are P-type ATPases of different specificity with respect to the transported substrate(s). In animal cells, P-type ATPases are known for uniport, e.g., of Ca2+ (review: Carafoli 1991) or H+ (Kinne-Saffran 1989) and for antiport, e.g., of H+/K+ (Forte et al. 1989) or of Na+/K+ (Skou 1965), the latter being probably the most familiar P-type ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachmann P, Zetsche K (1975) Activities of mannose-polymerizing enzyme and GDP- mannose pyrophosphorylase during the morphogenesis of Acetabularia mediterranea. Protoplasma 83: 169–179

    Google Scholar 

  • Beilby MJ (1989) Electrophysiology of giant algal cells. Methods Enzymol 174: 403–443

    Article  CAS  Google Scholar 

  • Benz R, Zimmermann U (1983) Evidence for the presence of mobile charges in the cell membrane of Valonia utricularis. Biophys J 43: 13–26

    Article  PubMed  CAS  Google Scholar 

  • Benz R, Büchner KH, Zimmermann U (1988) Mobile charges in the cell membranes of Halicystis parvula. Planta 174: 479–487

    Article  Google Scholar 

  • Berti A, Gradmann D (1987) Current-voltage relationships of potassium channels in the plasmalemma of Acetabularia. J Membr Biol 99: 41–49

    Article  Google Scholar 

  • Berti A, Klieber HG, Gradmann D (1988) Slow kinetics of a potassium channel in Acetabularia. J Membr Biol 102: 141–152

    Article  Google Scholar 

  • Bisson MA, Kirst GO (1980) Lamprothamnium, a euhyaline Charophyte. I. Osmotic relations and membrane potential at steady state. J Exp Bot 31: 1223–1235

    Article  CAS  Google Scholar 

  • Blatt RM (1987) Electrical characteristics of stomatal guard cells: the contribution of ATP-dependent, “electrogenic” transport revealed by current-voltage and difference-current- voltage analysis. J Membr Biol 98: 257–274

    Article  CAS  Google Scholar 

  • Blatt RM, Beilby MJ, Tester M (1990) Voltage dependence of the Chara proton pump revealed by current-voltage measurement during rapid metabolic blockade with cyanide. J Membr Biol 114: 205–223

    Article  PubMed  CAS  Google Scholar 

  • Blinks LR (1936) The effects of current flow in large plant cells. Cold Spring Harbor Symp Quant Biol 4: 34–42

    CAS  Google Scholar 

  • Bowman BJ, Bowman EJ (1986) H+-ATPases from mitochondria, plasma membranes, and vacuoles of fungal cells. J Membr Biol 94: 83–97

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71: 129–153

    PubMed  CAS  Google Scholar 

  • Eyring H, Lumry R, Woodsbury JW (1949) Some applications of modern rate theory to physiological systems. Ree Chem Prog 10: 100–114

    CAS  Google Scholar 

  • Felle H, Bentrup F (1976) Effect of light upon membrane potential, conductance, and ion fluxes in Riccia fluitans. J Membr Biol. 27: 153–170

    Article  CAS  Google Scholar 

  • Finkelstein A (1964) Carrier model for active transport of ions across a mosaic membrane. Biophys J 4: 421–440

    Article  PubMed  CAS  Google Scholar 

  • Forte JG, Hanzel DK, Urushidani T, Wolosin JM (1989) Pumps and pathways for gastric HC1 secretion. Ann NY Acad Sci 574: 145–158

    Article  PubMed  CAS  Google Scholar 

  • Freudling C, Gradmann D (1979) Cable properties and compartmentation in Acetabularia. Biochim Biophys Acta 552: 358–365

    Article  PubMed  CAS  Google Scholar 

  • Gerencser GA (1989) Primary active electrogenic chloride transport across the Aplysia gut. Ann NY Acad Sci 574: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Gerencser GA, White JF, Gradmann D, Bonting S (1988) Is there a Cl pump? Am J Physiol 255: R677-R692

    PubMed  CAS  Google Scholar 

  • Goldfarb V, Gradmann D (1983) ATPase activities in partially purified membranes of Acetabularia. Plant Cell Rep 2: 152–155

    Article  CAS  Google Scholar 

  • Goldfarb V, Sanders D, Gradmann D (1984a) Phosphate relations of Acetabularia: phosphate pools, adenylate phosphates and 32P influx kinetics. J Exp Bot. 35: 626–644

    Article  CAS  Google Scholar 

  • Goldfarb V, Sanders D, Gradmann D (1984b) Reversal of electrogenic Cl pump in Acetabularia increases level and 32P labelling of ATP. J Exp Bot 35: 645–658

    Article  CAS  Google Scholar 

  • Gradmann D (1970) Einfluß von Licht Temperatur und Außenmedium auf die elektrischen Eigenschaften von Acetabularia. Planta 93: 323–353

    Article  CAS  Google Scholar 

  • Gradmann D (1975) Analog circuit of the Acetabularia membrane. J Membr Biol 25: 183–208

    Article  PubMed  CAS  Google Scholar 

  • Gradmann D (1976) “Metabolic” action potentials in Acetabularia. J Membr Biol 29: 23–45

    Article  PubMed  CAS  Google Scholar 

  • Gradmann D (1989a) ATP-driven chloride pump in giant alga Acetabularia. Methods Enzymol 174: 490–504

    Article  CAS  Google Scholar 

  • Gradmann D (1989b) Electrogenic chloride transport in algae. Ann NY Acad Sci. 574: 20–29

    Article  PubMed  CAS  Google Scholar 

  • Gradmann D, Klieber HG, Hansen UP (1987) Reaction kinetic parameters for ion transport from steady state current-voltage curves. Biophys J 53: 287–292

    Google Scholar 

  • Graves JS, Gutknecht J (1977a) Chloride transport and the membrane potential in the marine alga Halicystis parvula. J Membr Biol 36: 65–81

    Article  CAS  Google Scholar 

  • Graves JS, Gutknecht J (1977b) Current-voltage relationships and voltage, sensitivity of the Cl pump in Halicystis parvula. J Membr Biol 36: 83–95

    Article  CAS  Google Scholar 

  • Hansen UP, Gradmann D, Sanders D, Slayman CL (1981) Interpretation of current-voltage relationships for “active” ion transport systems. I. Steady-state reaction-kinetic analysis of class-I mechanisms. J Membr Biol 63: 165–190

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Oesterhelt D (1990) A Cl-translocating adenosinetriphosphatase in Acetabularia acetabulum. 2. Reconstitution of the enzyme into liposomes and effect of net charges of liposomes on chloride permeability and reconstitution. Biochemistry 29: 2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Schmid R, Oesterhelt D (1990) A Cl-translocating adenosinetriphosphatase in Acetabularia acetabulum. 1. Purification and characterization of a novel type of adenosinetriphosphatase that differs from chloroplast Fl adenosinetriphosphatase. Biochemistry 29: 2057–2065

    Article  PubMed  CAS  Google Scholar 

  • Kinne-Saffran E (1989) Renal H+ ATPases. Ann NY Acad Sci 574: 189–200

    Article  PubMed  CAS  Google Scholar 

  • Lainson R, Field CP (1976) Electrical properties of Valonia ventricosa. J Membr Biol 29:81–94

    Article  PubMed  CAS  Google Scholar 

  • Läuger P (1980) Kinetic properties of ion carriers and channels. J Membr Biol 57: 163–178

    Article  PubMed  Google Scholar 

  • Miller AJ, Sanders D (1987) Depletion of cytosolic free calcium induced by photosynthesis. Nature 326: 397–400

    Article  CAS  Google Scholar 

  • Mummert H, Gradmann D (1991) Ion fluxes in Acetabularia: vesicular shuttle. J Membr Biol 124: 255–263

    Article  PubMed  CAS  Google Scholar 

  • Mummert H, Hansen UP, Gradmann D (1981) Current-voltage curve of electrogenic Cl pump predicts voltage-dependent Cl~ efflux in Acetabularia. J Membr Biol 62: 139–148

    Article  CAS  Google Scholar 

  • Oesterhelt D, Tittor J (1989) Two pumps, one principle: light-driven ion transport in halobacteria. TIBS 14: 57–61

    PubMed  CAS  Google Scholar 

  • Pedersen PL, Carafoli E (1987) Ion motive ATPases. I. Ubiquity, properties, and significance to cell functions. TIBS 12: 146–150

    CAS  Google Scholar 

  • Saddler HDW (1970) The ionic relations of Acetabularia mediterranea. J Exp Bot 21: 345–359

    Article  CAS  Google Scholar 

  • Sanders D, Hansen UP, Gradmann D, Slayman CL (1984) Generalized kinetic analysis of ion-driven cotransport systems: a unified interpretation of selective ionic effects on Michaelis parameters. J Membr Biol 77: 123–152

    PubMed  CAS  Google Scholar 

  • Sekler I, Gläser HU, Pick U (1991) Characterization of a plasma membrane H+-ATPase from the extremely acidophilic alga Dunaliella acidophila. J Membr Biol 121: 51–57

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta 947: 1–27

    PubMed  CAS  Google Scholar 

  • Skou JC (1965) Enzymatic basis for active transport of Na+ and K+ across cell membranes. Physiol Rev 45: 596–617

    PubMed  CAS  Google Scholar 

  • Slayman CL (1965) Electrical properties of Neurospora crassa. II. Respiration and the intracellular potential. J Gen Physiol 49: 93–116

    Article  PubMed  CAS  Google Scholar 

  • Smahel M, Hamann A, Gradmann D (1990) The prime plasmalemma ATPase of the halophilic alga Dunaliella bioculata: purification and characterization. Planta 181: 496–504

    Article  CAS  Google Scholar 

  • Smahel M, Klieber HG, Gradmann D (1992) Vanadate-sensitive ATPase in the plasmalemma of Acetabularia: biochemical and kinetic characterization. Planta 188: 62–69

    Article  CAS  Google Scholar 

  • Spanswick RM (1989) Vacuolar and cell membrane H+-ATPases of plant cells. Ann NY Acad Sci 574: 180–188

    Article  PubMed  CAS  Google Scholar 

  • Sze H (1984) H+-translocating ATPases of the plasma membrane and tonoplast of plant cells. Physiol Plant 61: 683–691

    Article  CAS  Google Scholar 

  • Sze H (1985) H+-translocating ATPases: advances using membrane vesicles. Ann Rev. Plant Physiol 36: 175–208

    Article  CAS  Google Scholar 

  • Tittor J, Hansen UP, Gradmann D (1983) Impedance of the electrogenic CP pump in Acetabularia: electrical frequency entrainements, voltage-sensitivity, and reaction kinetic interpretation. J Membr Biol 75: 129–139

    Article  Google Scholar 

  • Wang J, Wehner R, Benz R, Zimmermann U (1991) Influence of external chloride concentration on the kinetics of mobile charges in cell membrane of Valonia utricularis. Evidence for the existence of a chloride carrier. Biophys J 59: 235–248

    Article  PubMed  CAS  Google Scholar 

  • Zimányi L, Lanyi JK (1989) Halorhodopsin: a light-driven active chloride transport system. Ann NY Acad Sci 574: 11–19

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gradmann, D., Wolf, A. (1994). Chloride ATPase in Marine Algae. In: Gerencser, G.A. (eds) Electrogenic Cl Transporters in Biological Membranes. Advances in Comparative and Environmental Physiology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78261-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78261-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78263-3

  • Online ISBN: 978-3-642-78261-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics