Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 19))

Abstract

Small intestinal and colonic epithelial cells work to absorb chloride, sodium, and water from the lumen. Salt and water transport is under strong control, with a variety of agonists serving to reduce Cl absorption or even induce secretion of Cl and water by the gut (Liedtke 1987). In recent years, considerable effort has been directed toward understanding the membrane mechanisms underlying transcellular Cl transport, both absorption and secretion. The picture which is emerging is that multiple, carrier-mediated uptake processes for Cl reside within the same cell in parallel with a variety of Cl conductive pathways (Cl channels). By dissipating transmembrane electrochemical gradients generated by active Cl uptake, these Cl channels play a regulatory role in both absorption and secretion of chroride. In this chapter, recent studies are reviewed defining the characteristics of Cl channels in small intestinal and colonic epithelial cells. Two recent reviews (Gôgelein 1988; Frizzell and Halm 1990) provide a general description of Cl channels in epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barry RJC, Smyth DH, Wright EM (1965) Short-circuit current and solute transfer by rat jejunum. J Physiol (Lond) 181: 410–431

    CAS  Google Scholar 

  • Bridges RJ, Worrell RT, Frizzell RA, Benos DJ (1989) Stilbene disulfonate blockade of colonic secretory Cl channels in planar lipid bilayers. Am J Physiol 256: C902-C912

    PubMed  CAS  Google Scholar 

  • Cliff WH, Frizzell RA (1990) Separate Cl conductances activated by cAMP and Ca in Clsecreting epithelial cells. Proc Natl Acad Sci USA 87: 4956–4960

    Article  PubMed  CAS  Google Scholar 

  • deJonge HR, van den Berghe N, Tilly BC, Kansen M, Bijman J (1989) (Dys) regulation of epithelial chloride channels. Biochem Soc Trans 17: 816–819

    Google Scholar 

  • Dharmsathaphorn K, MeRoberts JA, Mandel KG, Tisdale LD, Masui H (1984a) A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol 246: G204-G208

    PubMed  CAS  Google Scholar 

  • Dharmsathaphorn K, MeRoberts J A, Mandel KG, Tisdale D, Masui H (1984b) Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. J Clin Invest 75: 462–471

    Article  Google Scholar 

  • Diener M, Rummel W, Mestres P, Lindemann B (1989) Single chloride channels in colon mucosa and isolated colonic enterocytes of the rat. J Membr Biol 108: 21–30

    Article  PubMed  CAS  Google Scholar 

  • DiStefano A, Wittner M, Schlatter E, Lang HJ, Englert H, Greger R (1985) Diphenylamine-2- carboxylate, a blocker of the chloride conductive pathway in chloride transporting epithelia. Pfluegers Arch Eur J Physiol 405 (Suppl 1): S95-S100

    CAS  Google Scholar 

  • Forsyth GW, Gabriel SE (1989) Activation of chloride conductance in pig jejunal brush border vesicle. J Membr Biol 107: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Frizzell R (1977) Active chloride secretion by rabbit colon: calcium dependent stimulation by ionophore A23187. J Membr Biol 35: 175–187

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA (1987) Cystic fibrosis: a disease of ion channels? Trends Neurosci 10: 190–193

    Article  CAS  Google Scholar 

  • Frizzell RA, Halm DR (1990) Chloride channles in epithelial cells. Curr Top Membr Transp 37: 247–282

    CAS  Google Scholar 

  • Giraldez F, Sepulveda FV (1987) Changes in the apparent permeability of Necturus enterocytes during the sodium-coupled transport of alanine. Biochim Biophys Acta 898:248–252

    Article  PubMed  CAS  Google Scholar 

  • Giraldez F, Sepulveda FY, Sheppard DN (1988a) A chloride conductance activated by adenosine 3’-5’-cyclic monophosphate in the apical membrane of Necturus enterocytes. J Physiol 395: 597–623

    PubMed  CAS  Google Scholar 

  • Giraldez F, Valverde MA, Sepulveda FV (1988b) Hypotonicity increases apical membrane Cl conductance in Necturus enterocytes. Biochim Biophys Acta 942: 353–356

    Article  CAS  Google Scholar 

  • Giraldez F, Murray KJ, Sepulveda FV, Sheppard DN (1989) Characterization of a phosphor- ylation-activated Clselective channel in isolated Necturus enterocytes. J Physiol 416: 517–537

    PubMed  CAS  Google Scholar 

  • Gogelein H (1988) Chloride channels in epithelia. Biochim Biophys Acta 947: 521–547

    PubMed  CAS  Google Scholar 

  • Gunther RD, Schell RE, Wright EM (1984) Ion permeability of rabbit intestinal brush border membrane vesicles. J Membr Biol 78: 119–1274

    Article  PubMed  CAS  Google Scholar 

  • Halm DR, Krasny KJ Jr, Frizzell RA (1984) Electrophysiology of flounder intestinal mucosa: I. Conductance properties of the cellular and paracellular pathways. J Gen Physiol 85: 843–864

    Google Scholar 

  • Halm DR, Rechkemmer GR, Schoumacher RA, Frizzell RA (1988) Apical membrane chloride channels in a colonic cell line activated by secretory agonists. Am J Physiol 254: C505-C511

    PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher A, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch Eur J Physiol 391: 85–100

    Article  CAS  Google Scholar 

  • Hayslett JP, Gogelein H, Kunzelmann K, Greger R (1987) Characteristics of apical chloride channels in human colon cells (HT29). Pfluegers Arch Eur J Physiol 410: 487–494

    Article  CAS  Google Scholar 

  • Hazama A, Okada Y (1988) Ca2+ sensitivity of volume-regulatory K+ and Cl channels in cultured human epithelial cells. J Physiol 402: 687–702

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Keynes RD (1955) The potassium permeability of a giant nerve fiber. J Physiol (Lond) 128: 61–88

    CAS  Google Scholar 

  • Kartner N, Hanrahan JW, Jensen TJ, Naismith AL, Sun S, Ackerley CA, Reyes EF, Tsui L-C, Rommens JM, Bear CE, Riordan JR (1991) Expression of the cystic fibrosis gene in non- epithelial invertebrate cells produces a regulated anion conductance. Cell 64: 681–691

    Article  PubMed  CAS  Google Scholar 

  • Kimberg DVM, Field E, Sershon E, Henderson A (1974) Effects of prostaglandins and cholera enterotoxin on intestinal mucosal cyclic AMP accumulation. J Clin Invest 53: 941–949

    Article  PubMed  CAS  Google Scholar 

  • Knickelbein R, Aronson PS, Schron CM, Seifter J, Dobbins JW (1985) Sodium and chloride transport across rabbit ileal brush border: II. Evidence for Cl/HCO 3 exchange and mechanism of coupling. Am J Physiol 249: G236-G245

    PubMed  CAS  Google Scholar 

  • Liedtke CM (1987) Regulation of chloride transport in epithelia. Annu Rev Physiol 51: 143–160

    Article  Google Scholar 

  • Liedtke CM, Hopfer U (1982) Mechanism of Cltranslocation across small intestinal brush border membrane II. Demonstration of ClOH exchange and Cl conductance. Am J Physiol 242: G272-G280

    PubMed  CAS  Google Scholar 

  • Loretz CA, Fourtner CR (1988) Functional characterization of a voltage gated anion channel from teleost fish intestinal epithelium. J Exp Biol 136: 383–403

    PubMed  CAS  Google Scholar 

  • Munck BG (1972) Effect of sugar and amino acid transport on transepithelial fluxes of sodium and chloride of short-circuited rat jejunum. J Physiol (Lond) 223: 699–717

    CAS  Google Scholar 

  • Patten SF (1960) Renewal of the intestinal epithelium of the urodele. Exp Cell Res 20:638–641

    Article  PubMed  Google Scholar 

  • Paulais M, Teulon J (1990) cAMP-Activated Cl channel in the basolateral membrane of the thick ascending limb of the mouse kidney. J Membr Biol 113: 253–260

    Google Scholar 

  • Reinhardt R, Bridges RJ, Rummel W, Lindemann B (1987) Properties of an anion-selective channel from rat colonic enterocytes plasma membrane reconstituted into planar phospholipid bilayers. J Membr Biol 95: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Schlatter E, Greger R (1985) cAMP increases the basolateral Cl conductance in the isolated perfused medullary thick ascending limb of Henle’s loop of the mouse. Pfluegers Arch Eur J Physiol 405: 367–376

    Google Scholar 

  • Schwartz CJ, Kimberg DV, Sheerin HE, Field M, Said SI (1974) Vasoactive intestinal peptide stimulation of adenylate cyclase and active electrolyte secretion in intestinal mucosa. J Clin Invest 54: 536–544

    Article  PubMed  CAS  Google Scholar 

  • Tabcharani J A, Low W, Elie D, Hanrahan JW (1990) Low-conductance chloride channel activated by cAMP in the epithelial cell line T84. FEBS Lett 270: 157–164

    Article  PubMed  CAS  Google Scholar 

  • Taylor AE, Wright EM, Schultz SG, Curran PF (1968) Effect of sugars on ion fluxes in intestine. Am J Physiol 214: 836–842

    PubMed  CAS  Google Scholar 

  • Tilly BC, Kansen M, van Gageldonk PG, van den Berghe N, Galjaard H, Bijman J, deJonge HR (1991) G proteins mediate intestinal chloride channel activation. J Biol Chem 266: 2036–2040

    PubMed  CAS  Google Scholar 

  • Vaandrager AB, Ploemacher MC, DeJonge H (1986) Modulation of salt permeabilities of intestinal brush-border membrane vesicles by micromolar levels of internal calcium. Biochim Biophys Acta 856: 325–336

    Article  PubMed  CAS  Google Scholar 

  • Wangemann P, Wittner M, DiStefano A, Englert H, Lang HJ, Schlatter E, Greger R (1986) Cl channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pfluegers Arch Eur J Physiol 407: S128-S141

    Article  CAS  Google Scholar 

  • White JF (1981) Chloride transport and intracellular chloride activity in the presence of theophylline in Amphiuma small intestine. J Physiol 321: 331–341

    PubMed  CAS  Google Scholar 

  • White JF (1986a) Evidence against luminal 1 for 1 CP-HCOJ exchange. Am J Physiol 251: G230-G236

    PubMed  CAS  Google Scholar 

  • White JF (1986b) Modes of Cl transport across mucosal and serosal membranes of urodele intestinal cells. J Membr Biol 92: 75–89

    Article  PubMed  CAS  Google Scholar 

  • White JF (1989a) Conductive pathways for HCO3 in the basolateral membrane of salamander intestinal cells. Am J Physiol 257: C252-C260

    PubMed  CAS  Google Scholar 

  • White JF (1989b) Characteristics of chloride ion influx in Amphiuma small intestine. Am J Physiol 256: G166-G177

    PubMed  CAS  Google Scholar 

  • White JF, Ellingsen D (1989) Basolateral impalement of intestinal villus cells. Electrophysiology of chloride transport. Am J Physiol 256: C1022-C1032

    PubMed  CAS  Google Scholar 

  • White JF, Imon MA (1982) Intestinal HCO3 secretion: dependence on mucosal Cl and serosal Na+. J Membr Biol 68: 207–214

    Article  PubMed  CAS  Google Scholar 

  • White JF, Ellingsen D, Burnup K (1984) Electrogenic Cl absorption by Amphiuma small intestine: dependence on serosal Na from tracer and Cl microelectrode studies. J Membr Biol 78: 223–233

    Article  PubMed  CAS  Google Scholar 

  • White JF, Burnup K, Ellingsen D (1986) Effect of solutes on intestinal Cl transport and intracellular Na11, K+, and CT activity. Am J.Physiol 250: G109-G117

    PubMed  CAS  Google Scholar 

  • Worrell RT, Butt AG, Cliff WH, Frizzell RA (1989) A volume-sensitive chloride conductance in human colonic cell line T84. Am J Physiol 256: C1111-C1119

    PubMed  CAS  Google Scholar 

  • Wright EM, Diamond JM (1977) Anion selectivity in biological systems. Physiol Rev 57: 109–186

    PubMed  CAS  Google Scholar 

  • Ziomek CA, Schulman S, Edidin M (1980) Redistribution of membrane proteins in isolated mouse intestinal epithelial cells. J Cell Biol 86: 849–857

    Article  PubMed  CAS  Google Scholar 

  • Ziss W, Fromm M, Sorgenfrei D, Hegel U (1987) Effect of chloride step changes on the membrane potential in the human colonic cancer cell line HT-29. Pfluegers Arch Eur J Physiol 408: R32

    Article  Google Scholar 

  • Zuidema T, van Riel JW, Siegenbeek van Heukelom J (1985) Cellular and transepithelial responses of goldfish intestinal epithelium to chloride substitutions. J Membr Biol 88: 293–304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

White, J.F. (1994). Chloride Channels in Epithelial Cells of Intestine. In: Gerencser, G.A. (eds) Electrogenic Cl Transporters in Biological Membranes. Advances in Comparative and Environmental Physiology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78261-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78261-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78263-3

  • Online ISBN: 978-3-642-78261-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics