Phosphoinositides in Rabbit Skeletal Muscle Membranes

  • H. Milting
  • R. Thieleczek
  • L. M. G. HeilmeyerJr.
Conference paper
Part of the NATO ASI Series book series (volume 76)


The phosphoinositides phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns(4)P) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) establish a membrane localized signaling pathway, which ultimately leads to the generation of the second messengers inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and diacylglycerol by phospholipase C (PLC).


Skeletal Muscle High Performance Thin Layer Chromatography Inositol Trisphosphate Rabbit Skeletal Muscle Frog Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Caswell, A.H., Lau, Y.H. and Brunschwig, J.P. (1976) Ouabain-binding vesicles from skeletal muscle. Arch. Biochem. Biophys. 176, 417–430.PubMedCrossRefGoogle Scholar
  2. Clarke, N.G. and Dawson, M.C. (1981) Alkaline O-N transacylation. A new method for the quantitative deacylation of phospholipids. Biochem. J. 195, 301–306.PubMedGoogle Scholar
  3. Hidalgo, C. and Jaimovich, E. (1989), Inositol trisphosphate and excitation con-tractioncoupling. J. Bioenerg. Biomembr. 21, 267–281.PubMedCrossRefGoogle Scholar
  4. Hannon, J.D., Lee, N.K.M, Yandong. C. and Blinks, J.R. (1992) Inositol trisphosphate (InsP3) causes contraction in skeletal muscle only under artificial conditions, evidence that Ca2+ release can result from depolarization of T-tubules. J. Musc. Res. Cell Mot. 13, 447–456.CrossRefGoogle Scholar
  5. Lagos, N. and Vergara, J. (1990) Phosphoinositides in frog skeletal muscle: a quantitative analysis. Biochim. Biophys. Acta 1043, 235–244.PubMedGoogle Scholar
  6. Lanzetta, P.A., Alvarez, L.J., Reinach, P.S. and Candia, O.A. (1979) An improved assay for nanomolar amounts of inorganic phosphate. Anal. Biochem. 100, 95–97.PubMedCrossRefGoogle Scholar
  7. Mayr, G.W. (1988) A novel metal-dye detection system permits picomolar-range h.p.l.c. analysis of inositol polyphosphates from non-radioactively labelled cell or tissue specimens. Biochem. J. 254, 585–591.PubMedGoogle Scholar
  8. Mayr, G.W. and Thieleczek, R. (1991) Masses of inositol phosphates in resting and tetanically stimulated vertebrate skeletal muscles. Biochem. J. 280, 631–640.PubMedGoogle Scholar
  9. Schacht, J. (1976) Extraction and purification of polyphosphoinositides. Meth. Enzymol. 72, 626–631.CrossRefGoogle Scholar
  10. Sun, G.Y., Lin, T.N. and Irvine, R.F. (eds) (1990) Separation of phosphoinositides and other phospholipids by high-performance thin-layer chromatography. Methods in Inositide Research, Raven Press New York, pp 153–158.Google Scholar
  11. Thieleczek, R., Mayr, G.W. and Brandt, N.R. (1989) Inositol polyphosphate-mediated repartitioning of aldolase in skeletal muscle. J. Biol. Chem. 264, 7349–7356.PubMedGoogle Scholar
  12. Valdivia, C., Vaughan, D., Potter, B.V.L. and Coronado, R. (1992) Fast Release of 45Ca2+ induced by inositol 1,4,5-trisphosphate and Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle: evidence for two types of Ca2+ release channels. Biophys. J. 61, 1184–1193.PubMedCrossRefGoogle Scholar
  13. Varsanyi, M., Messer, M. and Brandt, N.R. (1989) Intracellular localization of inositol-pospholipid-metabolizing enzymes in rabbit fast-twitch skeletal muscle. Eur. J. Biochem. 179, 473–479.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • H. Milting
    • 1
  • R. Thieleczek
    • 1
  • L. M. G. HeilmeyerJr.
    • 1
  1. 1.Institut für Physiologische Chemie, Abteilung für Biochemie Supramolekularer SystemeRuhr-UniversitätBochumGermany

Personalised recommendations