Skip to main content

Halocarbons in the Arctic and Antarctic Atmosphere

  • Conference paper
The Tropospheric Chemistry of Ozone in the Polar Regions

Part of the book series: NATO ASI Series ((ASII,volume 7))

Abstract

A wide range of halocarbon gases (those containing one or more of the halogens chlorine, fluorine, bromine and iodine) have been identified in the polar atmosphere. Their origins are various, from both anthropogenic and natural sources. Although much is known about the transformations of halocarbons in the stratosphere, and their apparent involvement in Antarctic stratospheric ozone depletion in particular, much less is know about their potential impact on tropospheric ozone chemistry. Nevertheless, the Arctic spring bromine “pulse” and negative correlation between particulate bromine and ozone is compelling evidence for halogen-ozone reactions in the polar troposphere. In the Antarctic, the progressive decline in free tropospheric ozone in austral summer has been attributed to greater UV penetration through the ozone-depleted stratosphere; a possible example of an indirect effect of halocarbons on tropospheric ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.G., W.H, Brune, S.A. Lloyd, D.W. Toohey, S.P. Sander, W.L. Starr, M. Loewenstein, J.R. Podolske, Kinetics of 03 destruction by C1O and BrO within the Antarctic vortex: an analysis based on in situ ER-2 data. J. Geophys. Res. 94(D): 11,480–1989.

    Google Scholar 

  • Barrie, L.A., J.W. Bottenheim, R.C. Schnell, P.J. Crutzen, R.A. Rasmussen, Ozone destruction and photochemical reactions at polar sunrise in the lower arctic atmosphere, Nature, 334: 138–141, 1988.

    Article  CAS  Google Scholar 

  • Berg, W.W., L.E. Heidt, W. Pollock, P.D. Sperry, R.J. Cicerone, Brominated organic species in the Arctic atmosphere, Geophys. Res. Lett.,11: 429–432, 1984.

    Article  CAS  Google Scholar 

  • Berg, W.W., P.D. Sperry, K.A. Rahn, E.S. Gladney, Atmospheric bromine in the Arctic, J. Geophys. Res., 88(C): 6719–6736, 1983.

    Google Scholar 

  • Bottenheim, J.W., L.A. Barrie, E. Atlas, L.E. Heidt, H. Niki, R.A. Rasmussen, P.B. Shepson Depletion of lower tropospheric ozone during Arctic Spring: the polar sunrise experiment 1988, J. Geophys. Res.,95(D): 18,555–18,568, 1990.

    Google Scholar 

  • Butler, J.H., J.W. Elkins, B.D. Hall, S.O. Cummings, S.A. Montzka, A decline in the growth rates of atmospheric halons, Nature, 359: 403–405, 1992.

    Article  CAS  Google Scholar 

  • Cicerone, R.J., L.E. Heidt, W.H. Pollock, Measurements of atmospheric methyl bromide and bromoform, J. Geophys. Res., 93(D4): 3745–3749, 1988.

    Google Scholar 

  • Dunton, K.H., E. Reimnitz, S. Schonberg, An arctic kelp community in the Alaskan Beaufort Sea. Arctic, 35: 465–484, 1982.

    Google Scholar 

  • Elkins J W, T.M. Thompson, T.H. Swanson, J.H. Butler, B.D. Hall, S.O. Cummings, D.A. Fisher, A.G. Raffo, Slowdown in the growth rates of atmospheric chlorofluorocarbons 11 and 12, Nature: submitted, 1992.

    Google Scholar 

  • Finlayson-Pitts, B.J., F.E. Livingstone, H.N. Berko, Ozone destruction and bromine photochemistry at ground level in the Arctic spring, Nature, 343: 622–625, 1990.

    Article  CAS  Google Scholar 

  • Hov. O., S.A. Penkett, I.S.A. Isaksen, A. Semb, Organic gases in the Norwegian Arctic, Geophys. Res. Lett., 11: 425–428, 1984.

    Google Scholar 

  • Gschwend, P.M., J.K. McFarlane, K.A. Newman, Volatile halogenated organic compounds released to seawater from temperate marine macroalgae, Science, 227: 1033–1035, 1985.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen, The trend of bromochlorodifluoromethane and the concentrations of other bromine-containing gases at the South Pole, Antarctic J. US: 206–207, 1985.

    Google Scholar 

  • McConnell, J.C., G.S. Henderson, L. Barrie, J. Bottenheim, H. Niki, C.H. Langford, E.M.J. Templeton, A new mechanism for Arctic 03 depletion at polar sunrise: heterogeneous photochemical bromine production, Nature, 355:150–152, 1992.

    Google Scholar 

  • Methyl Bromide Global Coalition, Proceedings of The Methyl Bromide Science Workshop Arlington VA June 2–3 1992, Atmospheric and Environmental Research Inc. Cambridge MA, 1992.

    Google Scholar 

  • Molina, L.T., M.J. Molina, F.S. Rowland, Ultraviolet absorption cross-sections of several brominated methanes and ethanes of atmospheric interest, J. Phys. Chem., 86: 26722676, 1982.

    Google Scholar 

  • Montzka S.A., R.C. Myers, J.H. Butler, S.O. Cummings, J.W. Elkins, Global measurements of HCFC-22, Am. Geophys. Union Fall Meeting, Dec. 7–11 1992 San Francisco, AGU Washington, 1992.

    Google Scholar 

  • Neff,W.D., On the influence of stratospheric stability on lower tropospheric circulation over the South Pole, Preprints: Third Conference on Polar Meteorology and Oceanography, 29 Sept.-2 Oct. 1992, Amer. Met. Soc. Portland OR, 1992.

    Google Scholar 

  • Oltmans, Si,. R.C. Schnell, P.J. Sheridan, R.E. Peterson, J.W. Winchester, S.M. Li, P.P. Tans, W.T. Sturges, J. Kahl, L.A. Barrie, Seasonal surface ozone and filterable bromine relationship in the High Arctic, Atmos Environ., 23: 2431–2441, 1989.

    Google Scholar 

  • Penkett, S.A., B.M.R. Jones, M.J. Rycroft, D.A. Simmons, An interhemispheric comparison of the concentrations of bromine compounds in the atmosphere, Nature, 318: 550–553, 1985.

    Article  Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil, Rare trace gases at the South Pole, Antarctic J. US: 250–251, 1983.

    Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil, Gaseous bromine in the Arctic and Arctic haze, Geophys. Res. Lett., 11: 433–436, 1984

    Article  CAS  Google Scholar 

  • Reifenhäuser, W., K.G Heumann, Bromo-and bromochloromethanes in the Antarctic atmosphere and the south polar sea, Chemosphere, 24: 1293–1300, 1992.

    Article  Google Scholar 

  • Salawitch, R.J., S.C. Wofsy, M.B. McElroy, Chemistry of OCIO in the Antarctic stratosphere: Implications for bromine, Planet. Space Sci. 36: 213, 1988.

    Article  CAS  Google Scholar 

  • Schnell, R.C., S.C. Liu, S.J. Oltmans, R.S. Stone, D.J. Hofmann, E.G. Dutton, T. Deshler, W.T. Sturges, J.W. Harder, S.D. Sewell, M. Trainer, J.M. Harris, Decrease of summer tropospheric ozone concentrations in Antarctica, Nature, 351: 726–729, 1991.

    Article  CAS  Google Scholar 

  • Smith, W.O. Jr, L.A. Codispoti, D.M. Nelson, T. Manley, E.J. Buskey, H.J. Niebauer, G.F. Cota, Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle, Nature, 352: 514–516, 1991.

    Article  Google Scholar 

  • Solomon, S. Progress towards a quantitative understanding of Antarctic ozone depletion, Nature, 347: 347–3 54, 1990.

    Google Scholar 

  • Sturges, W.T., Discussion: The reaction of NO2 with NaBr: a possible source of BrNO in polluted marine atmospheres, Atmos Environ, 23: 1167–1168, 1989.

    Article  CAS  Google Scholar 

  • Sturges. W.T., G.F. Cota, P.T. Buckley, Bromoform emission from Arctic ice algae, Nature, 358: 660–662, 1992a.

    Google Scholar 

  • Sturges, W.T., R.C. Schnell, G.S. Dutton, S.R. Garcia, J.A. Lind, Spring measurements of atmospheric bromine at Barrow, Alaska, Geophys. Res. Lett.: in press, 1992b.

    Google Scholar 

  • Sturges, W.T., R.C. Schnell, S. Landsberger, S.J. Oltmans, J.M. Harris, S.M. Li, Chemical and meteorological influences on surface ozone destruction at Barrow, Alaska, during spring 1989, Atmos. Environ.: in press, 1992c.

    Google Scholar 

  • Sturges, W.T., C.W. Sullivan, R.C. Schnell, L.E. Heidt, W.H. Pollock, Bromoalkane production by Antarctic ice algae, Tel/us: in press, 1992d.

    Google Scholar 

  • Welch, H.E., M.A. Bergmann, T.D. Siferd, K.A. Marten, M.F. Curtis, R.E. Crawford, R.J. Conover, H. Hop, Energy flow through the marine ecosystem of the Lancaster Sound region, Arctic: in press, 1992.

    Google Scholar 

  • Weyer, R., M.G.M. Tromp, B.E. Krenn, A.Marjani, M. Van Tol, Brominating activity of the seaweed Ascophyllum nodosum: impact on the biosphere, Environ. Sci. Technol., 25: 446–449,1991.

    Article  Google Scholar 

  • World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1991, WMO Geneva, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sturges, W.T. (1993). Halocarbons in the Arctic and Antarctic Atmosphere. In: Niki, H., Becker, K.H. (eds) The Tropospheric Chemistry of Ozone in the Polar Regions. NATO ASI Series, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78211-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78211-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78213-8

  • Online ISBN: 978-3-642-78211-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics