Halocarbons in the Arctic and Antarctic Atmosphere

  • William T. Sturges
Part of the NATO ASI Series book series (volume 7)

Abstract

A wide range of halocarbon gases (those containing one or more of the halogens chlorine, fluorine, bromine and iodine) have been identified in the polar atmosphere. Their origins are various, from both anthropogenic and natural sources. Although much is known about the transformations of halocarbons in the stratosphere, and their apparent involvement in Antarctic stratospheric ozone depletion in particular, much less is know about their potential impact on tropospheric ozone chemistry. Nevertheless, the Arctic spring bromine “pulse” and negative correlation between particulate bromine and ozone is compelling evidence for halogen-ozone reactions in the polar troposphere. In the Antarctic, the progressive decline in free tropospheric ozone in austral summer has been attributed to greater UV penetration through the ozone-depleted stratosphere; a possible example of an indirect effect of halocarbons on tropospheric ozone.

Keywords

Vortex Foam Phytoplankton Chlorine Gasoline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.G., W.H, Brune, S.A. Lloyd, D.W. Toohey, S.P. Sander, W.L. Starr, M. Loewenstein, J.R. Podolske, Kinetics of 03 destruction by C1O and BrO within the Antarctic vortex: an analysis based on in situ ER-2 data. J. Geophys. Res. 94(D): 11,480–1989.Google Scholar
  2. Barrie, L.A., J.W. Bottenheim, R.C. Schnell, P.J. Crutzen, R.A. Rasmussen, Ozone destruction and photochemical reactions at polar sunrise in the lower arctic atmosphere, Nature, 334: 138–141, 1988.CrossRefGoogle Scholar
  3. Berg, W.W., L.E. Heidt, W. Pollock, P.D. Sperry, R.J. Cicerone, Brominated organic species in the Arctic atmosphere, Geophys. Res. Lett.,11: 429–432, 1984.CrossRefGoogle Scholar
  4. Berg, W.W., P.D. Sperry, K.A. Rahn, E.S. Gladney, Atmospheric bromine in the Arctic, J. Geophys. Res., 88(C): 6719–6736, 1983.Google Scholar
  5. Bottenheim, J.W., L.A. Barrie, E. Atlas, L.E. Heidt, H. Niki, R.A. Rasmussen, P.B. Shepson Depletion of lower tropospheric ozone during Arctic Spring: the polar sunrise experiment 1988, J. Geophys. Res.,95(D): 18,555–18,568, 1990.Google Scholar
  6. Butler, J.H., J.W. Elkins, B.D. Hall, S.O. Cummings, S.A. Montzka, A decline in the growth rates of atmospheric halons, Nature, 359: 403–405, 1992.CrossRefGoogle Scholar
  7. Cicerone, R.J., L.E. Heidt, W.H. Pollock, Measurements of atmospheric methyl bromide and bromoform, J. Geophys. Res., 93(D4): 3745–3749, 1988.Google Scholar
  8. Dunton, K.H., E. Reimnitz, S. Schonberg, An arctic kelp community in the Alaskan Beaufort Sea. Arctic, 35: 465–484, 1982.Google Scholar
  9. Elkins J W, T.M. Thompson, T.H. Swanson, J.H. Butler, B.D. Hall, S.O. Cummings, D.A. Fisher, A.G. Raffo, Slowdown in the growth rates of atmospheric chlorofluorocarbons 11 and 12, Nature: submitted, 1992.Google Scholar
  10. Finlayson-Pitts, B.J., F.E. Livingstone, H.N. Berko, Ozone destruction and bromine photochemistry at ground level in the Arctic spring, Nature, 343: 622–625, 1990.CrossRefGoogle Scholar
  11. Hov. O., S.A. Penkett, I.S.A. Isaksen, A. Semb, Organic gases in the Norwegian Arctic, Geophys. Res. Lett., 11: 425–428, 1984.Google Scholar
  12. Gschwend, P.M., J.K. McFarlane, K.A. Newman, Volatile halogenated organic compounds released to seawater from temperate marine macroalgae, Science, 227: 1033–1035, 1985.CrossRefGoogle Scholar
  13. Khalil, M.A.K., R.A. Rasmussen, The trend of bromochlorodifluoromethane and the concentrations of other bromine-containing gases at the South Pole, Antarctic J. US: 206–207, 1985.Google Scholar
  14. McConnell, J.C., G.S. Henderson, L. Barrie, J. Bottenheim, H. Niki, C.H. Langford, E.M.J. Templeton, A new mechanism for Arctic 03 depletion at polar sunrise: heterogeneous photochemical bromine production, Nature, 355:150–152, 1992.Google Scholar
  15. Methyl Bromide Global Coalition, Proceedings of The Methyl Bromide Science Workshop Arlington VA June 2–3 1992, Atmospheric and Environmental Research Inc. Cambridge MA, 1992.Google Scholar
  16. Molina, L.T., M.J. Molina, F.S. Rowland, Ultraviolet absorption cross-sections of several brominated methanes and ethanes of atmospheric interest, J. Phys. Chem., 86: 26722676, 1982.Google Scholar
  17. Montzka S.A., R.C. Myers, J.H. Butler, S.O. Cummings, J.W. Elkins, Global measurements of HCFC-22, Am. Geophys. Union Fall Meeting, Dec. 7–11 1992 San Francisco, AGU Washington, 1992.Google Scholar
  18. Neff,W.D., On the influence of stratospheric stability on lower tropospheric circulation over the South Pole, Preprints: Third Conference on Polar Meteorology and Oceanography, 29 Sept.-2 Oct. 1992, Amer. Met. Soc. Portland OR, 1992.Google Scholar
  19. Oltmans, Si,. R.C. Schnell, P.J. Sheridan, R.E. Peterson, J.W. Winchester, S.M. Li, P.P. Tans, W.T. Sturges, J. Kahl, L.A. Barrie, Seasonal surface ozone and filterable bromine relationship in the High Arctic, Atmos Environ., 23: 2431–2441, 1989.Google Scholar
  20. Penkett, S.A., B.M.R. Jones, M.J. Rycroft, D.A. Simmons, An interhemispheric comparison of the concentrations of bromine compounds in the atmosphere, Nature, 318: 550–553, 1985.CrossRefGoogle Scholar
  21. Rasmussen, R.A., M.A.K. Khalil, Rare trace gases at the South Pole, Antarctic J. US: 250–251, 1983.Google Scholar
  22. Rasmussen, R.A., M.A.K. Khalil, Gaseous bromine in the Arctic and Arctic haze, Geophys. Res. Lett., 11: 433–436, 1984CrossRefGoogle Scholar
  23. Reifenhäuser, W., K.G Heumann, Bromo-and bromochloromethanes in the Antarctic atmosphere and the south polar sea, Chemosphere, 24: 1293–1300, 1992.CrossRefGoogle Scholar
  24. Salawitch, R.J., S.C. Wofsy, M.B. McElroy, Chemistry of OCIO in the Antarctic stratosphere: Implications for bromine, Planet. Space Sci. 36: 213, 1988.CrossRefGoogle Scholar
  25. Schnell, R.C., S.C. Liu, S.J. Oltmans, R.S. Stone, D.J. Hofmann, E.G. Dutton, T. Deshler, W.T. Sturges, J.W. Harder, S.D. Sewell, M. Trainer, J.M. Harris, Decrease of summer tropospheric ozone concentrations in Antarctica, Nature, 351: 726–729, 1991.CrossRefGoogle Scholar
  26. Smith, W.O. Jr, L.A. Codispoti, D.M. Nelson, T. Manley, E.J. Buskey, H.J. Niebauer, G.F. Cota, Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle, Nature, 352: 514–516, 1991.CrossRefGoogle Scholar
  27. Solomon, S. Progress towards a quantitative understanding of Antarctic ozone depletion, Nature, 347: 347–3 54, 1990.Google Scholar
  28. Sturges, W.T., Discussion: The reaction of NO2 with NaBr: a possible source of BrNO in polluted marine atmospheres, Atmos Environ, 23: 1167–1168, 1989.CrossRefGoogle Scholar
  29. Sturges. W.T., G.F. Cota, P.T. Buckley, Bromoform emission from Arctic ice algae, Nature, 358: 660–662, 1992a.Google Scholar
  30. Sturges, W.T., R.C. Schnell, G.S. Dutton, S.R. Garcia, J.A. Lind, Spring measurements of atmospheric bromine at Barrow, Alaska, Geophys. Res. Lett.: in press, 1992b.Google Scholar
  31. Sturges, W.T., R.C. Schnell, S. Landsberger, S.J. Oltmans, J.M. Harris, S.M. Li, Chemical and meteorological influences on surface ozone destruction at Barrow, Alaska, during spring 1989, Atmos. Environ.: in press, 1992c.Google Scholar
  32. Sturges, W.T., C.W. Sullivan, R.C. Schnell, L.E. Heidt, W.H. Pollock, Bromoalkane production by Antarctic ice algae, Tel/us: in press, 1992d.Google Scholar
  33. Welch, H.E., M.A. Bergmann, T.D. Siferd, K.A. Marten, M.F. Curtis, R.E. Crawford, R.J. Conover, H. Hop, Energy flow through the marine ecosystem of the Lancaster Sound region, Arctic: in press, 1992.Google Scholar
  34. Weyer, R., M.G.M. Tromp, B.E. Krenn, A.Marjani, M. Van Tol, Brominating activity of the seaweed Ascophyllum nodosum: impact on the biosphere, Environ. Sci. Technol., 25: 446–449,1991.CrossRefGoogle Scholar
  35. World Meteorological Organization, Scientific Assessment of Ozone Depletion: 1991, WMO Geneva, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • William T. Sturges
    • 1
  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of Colorado & National Oceanic and Atmospheric Administration, US Department of CommerceBoulderUSA

Personalised recommendations