Advertisement

Impact of Global NOx Sources on the Northern Latitudes

  • Hiram LevyII
  • Walter J. Moxim
  • Prasad S. Kasibhatla
Part of the NATO ASI Series book series (volume 7)

Abstract

Nitrogen oxides (NOx), through their control of tropospheric ozone production, play a major role in determining the global reactivity of the atmosphere. The concentration of these oxides varies by as much as a factor of 1000 between continental source regions and remote locations and fluctuates significantly with season at high latitudes. While NOx levels appear to be rather low (<50 pptv) away from local sources, high levels of PAN, an important reservoir for NOx, have been measured at the surface in the winter polar regions [Barrie and Bottenheim, 1991] and in the free troposphere north of 30°N [Singh, Salas and Viezee, 1986]. Furthermore, our recent global chemical transport model (GCTM) study finds PAN to be the major reactive nitrogen species in the northern latitudes [Kasibhatla et al., 1992].

Keywords

Northern Latitude Fossil Fuel Combustion Vertical Wind Shear Free Troposphere Total Column Ozone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrea, M.O., et al., Biomass-burning emissions and associated haze layers over Amazonia, J. Geophys. Res., 93, 1509–1527, 1988.CrossRefGoogle Scholar
  2. Bakwin, P. S., et al., Reactive nitrogen oxides and ozone above a taiga woodland, submitted to J. Geophy. Res., 1992.Google Scholar
  3. Barrie, L. A. and J. W. Bottenheim, Sulfur and nitrogen pollution in the Arctic atmosphere, in: Pollution of the arctic atmosphere, W.T. Sturges, Editor, p. 155–183, Elsevier Science Publishers, London, 1991.Google Scholar
  4. Beck, J. R, C. E. Reeves, F. A. A. M. de Leeuw, and S. A. Penkett, The effect of aircraft emissions on tropospheric ozone in the northern hemisphere, Atmos. Environ., 26A, 17–29, 1992.CrossRefGoogle Scholar
  5. Chameides, W. L. and A. Tans, The two-dimensional diagnostic model for tropospheric OH: An uncertainty analysis, J. Geophys. Res., 86, 5209–5223, 1981.CrossRefGoogle Scholar
  6. Drummond, J. W., D. H. Ehhalt, and A. Volz, Measurements of nitric oxide between 0–12 km altitude and 67° N to 60° S latitude obtained during STRATOZ III, J. Geophys. Res., 93, 15831–15849, 1988.CrossRefGoogle Scholar
  7. Hao, W. M., M. H. Liu, and R. J. Crutzen, Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on FAO statistics from the period 1975–1980, Presented at Third International Symposium on Fire Ecology, Frieburg University, Federal Republic of Germany, 1989.Google Scholar
  8. Hameed, S. and J. Dignon, Changes in the geographical distributions of global emissions of NO, and SO, from fossil fuel combustion between 1966 and 1980, Atmos. Environ., 22, 441–449, 1988.CrossRefGoogle Scholar
  9. Hameed, S. and J. Dignon, Changes in the geographical distributions of global emissions of NO, and SO, from fossil fuel combustion between 1966 and 1980, Atmos. Environ., 22, 441–449, 1988.CrossRefGoogle Scholar
  10. Jaffe, D. A., R. E. Honrath, J. A. Herring, S.-M. Li, and J. D. Kahl, Measurements of nitrogen oxides at Barrow, Alaska during spring: Evidence for regional and Northern Hemisphere sources of pollution, J. Geophys. Res., 96, 7395–7405, 1991.CrossRefGoogle Scholar
  11. Kanakidou, M., H. B. Singh, K. M. Valentin and P. J. Crutzen, A two-dimensional study of ethane and propane oxidation in the troposphere, J. Geophys. Res., 96, 15395–15425, 1991.CrossRefGoogle Scholar
  12. Kasibhatla, P. S., H. Levy II, W J. Moxim, and W. L. Chameides, The relative impact of stratospheric photochemical production on tropospheric NOy levels: A model study, J. Geophys. Res., 96, 18631–18646, 1991.CrossRefGoogle Scholar
  13. Kasibhatla, P. S., H. Levy II, and W. J. Moxim, Global NOx, HNO3, PAN and NOy distributions from fossil-fuel combustion emissions: A model study, J. Geophys. Res., submitted, 1992.Google Scholar
  14. Liaw, Y., D. L. Sisterson and N. L. Miller, Comparison of field, laboratory, and theoretical estimates of global nitrogen fixation by lightning, J. Geophys. Res., 95, 22489–22494, 1990.CrossRefGoogle Scholar
  15. Levy II, H., J. D. Mahlman, and W. J. Moxim, Tropospheric N20 variability, J. Geophys. Res., 87, 3061–3080, 1982.CrossRefGoogle Scholar
  16. Levy II, H., and W. J. Moxim, Simulated global distribution and deposition of reactive nitrogen emitted by fossil fuel combustion, Tellus, 41, 256–271, 1989.Google Scholar
  17. Levy II, H., W. J. Moxim, P. S. Kasibhatla, and J. A. Logan, The global impact of biomass burning on tropospheric reactive nitrogen, in: Global biomass burning: Atmospheric, climatic, and biospheric implications, J.S. Levine, Editor, p. 363–369, MIT Press, Cambridge, Mass., 1991.Google Scholar
  18. Logan, J. A., Nitrogen oxides in the troposphere: Global and regional budgets, J. Geophys. Res., 88, 10785–10807, 1983.CrossRefGoogle Scholar
  19. Mahlman, J. D., and W. J. Moxim, Tracer simulation using a global general circulation model: Results from a midlatitude instantaneous source experiment, J. Atmos. Sci., 35, 1340–1374, 1978.CrossRefGoogle Scholar
  20. Manabe, S., D. G. Hahn, and J. L. Holloway, Jr., The seasonal variation of the tropical circulation as simulated by a global model of the atmosphere, J. Atmos. Sci., 31, 43–83, 1974.CrossRefGoogle Scholar
  21. Manabe, S., and J. L. Holloway, Jr., The seasonal variation of the hydrologic cycle as simulated by a global model of the atmosphere, J. Geophys. Res., 80, 1617–1649, 1975.CrossRefGoogle Scholar
  22. Manabe, S., and J. L. Holloway, Jr., The seasonal variation of the hydrologic cycle as simulated by a global model of the atmosphere, J. Geophys. Res., 80, 1617–1649, 1975.CrossRefGoogle Scholar
  23. Orville, R. E. and Spencer D. W., Global lightning flash frequency, Mon. Weather Rev., 107, 934, 1979.CrossRefGoogle Scholar
  24. Price, C. and D. Rind, A simple lightning parameterization for calculating global lightning distributions, J.Geophys. Res., 97, 9919–9934, 1992.CrossRefGoogle Scholar
  25. Proctor, D. E., Regions where lightning flashes began, J. Geophys. Res., 96, 5099–5112, 1991.CrossRefGoogle Scholar
  26. Ridley, B. A., Recent measurements of oxidized nitrogen compounds in the troposphere, Atmos. Environ., 25A, 1905–1926, 1991.Google Scholar
  27. Singh, H. B., L. J. Salas and W. Viezee, Global distribution of peroxyacetyl nitrate, Nature, 321, 588–591, 1986.CrossRefGoogle Scholar
  28. Smagorinsky, J., General circulation experiments with the primitive equations. I. The basic experiment, Mon. Wea. Rev., 91, 99–164, 1963.CrossRefGoogle Scholar
  29. Spivakovsky, C. M., S. C. Wofsy, and M. J. Prather, A numerical method for parameterization of atmospheric chemistry: Computation of tropospheric OH, J. Geophys. Res., 95, 18433–18440, 1990.CrossRefGoogle Scholar
  30. Turman, B. N. and Edgar, B. C., Global lightning distribution at dawn and dusk, J. Geophys. Res., 87, 1191–1206, 1982.CrossRefGoogle Scholar
  31. Vaghjiani, G. L. and A. R. Ravishankara, New measurements of the rate coefficient for the reaction of OH with methane, Nature, 350, 406–409, 1991.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Hiram LevyII
    • 1
  • Walter J. Moxim
    • 1
  • Prasad S. Kasibhatla
    • 2
  1. 1.Geophysical Fluid Dynamics Laboratory/NOAAPrinceton UniversityPrincetonUSA
  2. 2.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations