Die Beeinflussung der epithelinduzierten Osteogenese durch Tetracycline

  • F. W. Koch
  • U. v. Deimling
  • H. H. Meßler
  • K. J. Münzenberg
Conference paper

Zusammenfassung

Ektope Ossifikationen können zur Invalidisierung mit teils lebensbedrohlichen Funktionseinschränkungen führen. Die therapeutische Beeinflußbarkeit erscheint zum heutigen Zeitpunkt fraglich, da das Ausmaß der Knochenneubildung, ihr zeitliches Auftreten und ihre spätere Lokalisation meist nicht vorhersagbar sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bevelander G (1963) Effect of tetracycline on crystal growth. Nature 198:1103CrossRefGoogle Scholar
  2. Bevelander G, Cohlan SQ (1962) The effect on the rat fetus of transplacentally acquired tetracycline. Biol Neonat 4: 365–370PubMedCrossRefGoogle Scholar
  3. Bevelander G, Nakahara H, Rolle GK (1960) The effect of tetracycline on the development of the skeletal system of the chick embryo. Dev Biol 2: 298–312PubMedCrossRefGoogle Scholar
  4. Carter MP, Wilson F (1962) Tetracycline and congenital limb abnormalities. Br Med J 2: 407CrossRefGoogle Scholar
  5. Chu E, O’Hara AE, Keitel HG (1963) Relationship of growth of the fibula in premature infants to the administration of Oxytetracycline. Am J Dis Child 105: 753Google Scholar
  6. Cohlan SQ, Bevelander G, Tiamsic T (1968) Growth inhibition of prematures receiving tetracycline. Am J Dis Child 105: 453–461Google Scholar
  7. Fillipi B, Mela V (1957) Malformazioni congenite facciali e degli arti da tetracyclina. Minerva Chir 12Google Scholar
  8. Friedenstein AY (1960) Histogenetic activity of substances secreted by the transitional epithelium. Bull Exp Biol Med 50: 82–85Google Scholar
  9. Gibbons RJ, Reichelderfer TE (1960) Transplacental transmission of demethylchlortetracycline and toxicity studies in premature and full-term, newly born infants. Antbiot Med 7: 618Google Scholar
  10. Harris WH, Lavorgna J, Hamblen DL, Haywood EA (1968) The inhibition of ossification in vivo. Clin Orthop 61: 52–60PubMedGoogle Scholar
  11. Huggins CB (1929) Influence of urinary tract mucosa on the experimental formation of bone. Proc Soc Exp Biol Med 27: 349–350Google Scholar
  12. Koch FW, Messler H, Rüther W, Münzenberg, KJ (1992) Die Bestimmung der induzierbaren Osteoprogenitorzellen der Hüft- und Knieregion mit der Methode der epithelinduzierten Osteogenese. Z OrthopGoogle Scholar
  13. Rolle GK, Bevelander G (1966) Further studies on the effect of tetracycline on the developing skeleton of chick embryo. J Morphol 118: 317–330PubMedCrossRefGoogle Scholar
  14. Sandhu HS, Tonna EA (1986) Incorporation and stabilization of 3H-tetracycline in embryonic chick bone: an autoradiographic study. Acta Anat (Basel), 127/2:133–136CrossRefGoogle Scholar
  15. Saxen L (1965) Tetracycline: effect on osteogenesis in vitro. Science 149: 870–872PubMedCrossRefGoogle Scholar
  16. Simmons DJ, Chang SL, Russell JE, Grazman B, Webster BA, Oloff PD (1983) The effect of protected tetracycline treatment on bone growth and maturation. Clin Orthop 180: 253–259PubMedGoogle Scholar
  17. Yen PKJ, Shaw JH (1973) Effects of tetracycline on membranous bone growth and dentin apposition in young rhesus monkeys. J Dent Res 53: 897–906Google Scholar
  18. Yen PKJ, Shaw JH (1974) Effects of repeated oral doses of demethylchlortetracycline on bones and dentin of young rhesus monkeys. J Dent Res 54: 358–364Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • F. W. Koch
    • 1
  • U. v. Deimling
    • 1
  • H. H. Meßler
    • 2
  • K. J. Münzenberg
    • 1
  1. 1.Orthopädische Universitätsklinik BonnBonnDeutschland
  2. 2.Orthopädische AbteilungKrankenhaus NeuwerkMönchengladbachDeutschland

Personalised recommendations