Optoelectronic Integration

  • Karl Joachim Ebeling


The monolithic integration of lasers and photodiodes with transistors, resistors or capacitors turns out to be extremely complicated. The optimization of the individual components demands technological measures of mutually competing nature, which can be reconciled only with difficulty in an integration of such very diverse structures. Nevertheless, eventual advantages are to be expected from integrated optoelectronic circuits, since parasitic capacitances and inductances will be reduced to a minimum. Integration also certainly facilitates mass production.


Laser Diode Shot Noise Ridge Waveguide Gate Leakage Current Monolithic Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 13.1
    Sze, S.M.: Semiconductor Devices. Physics and Technology. New York: Wiley and Sons 1985Google Scholar
  2. 13.2
    Wada, O.; Hamaguchi, H.; Makiuchi, M.; Kumai, T.; Ito, M.; Nakai, K.; Horimatsu, T.; Sakurai, T.: Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate. IEEE J. Lightwave Technol. LT-4 (1986) 1694–1702Google Scholar
  3. 13.3
    Margalit, S.; Yariv, A.: Integrated Electronic and Photonic Devices. In: Tsang, W.T. (Ed.): Semiconductors and Semimetals, Vol. 22, Part E, p. 203–263. New York: Academic Press 1985Google Scholar
  4. 13.4
    Wada, O.; Sakurai, T.; Nakagami, T.: Recent progress in optoelectronic integrated circuits (OEICs). IEEE J. Quantum Electron. QE-22 (1986) 805–821Google Scholar
  5. 13.5
    Forrest, S.R.: Monolithic optoelectronic integration: A new component technology for lightwave communications. IEEE J. Lightwave Technol. LT-3 (1985) 1248–1263Google Scholar
  6. 13.6
    Smith, R.G.; Personick, S.D.: Receiver design for optical fiber communication systems. In: Kressel, H. (Ed.): Topics in Applied Physics, Vol. 39, p. 89–160. Berlin: Springer 1982Google Scholar
  7. 13.7
    Forrest, S.R.: Optoelectronic integrated circuits. Proceedings IEEE 75 (1987) 1488–1497CrossRefADSGoogle Scholar
  8. 13.8
    Miura, S.; Hamaguchi, H.; Mikawa, T.; Fujii, T.; Aoki, O.; Wada, O.: High-speed GaInAs monolithic PIN/FET receiver. Proceedings Thirteenth European Conference on Optical Communication. Helsinki 1987, pp. 66–69Google Scholar
  9. 13.9
    Sakano, S.; Inoue, H.; Nakamura, H.; Katsuyama, T.; Matsumura, H.: InGaAsP/InP monolithic integrated circuit with lasers and an optical switch. Electronics Letters 22 (1986) 594–596CrossRefGoogle Scholar
  10. 13.10
    Razeghi, M.; Maurel, P.; Defour, M.; Omnes, F.; Acher, O.: MOCVD growth of III-V heterojunctions and superlattices on Si substrates for photonic devices. Proc. Fourteenth European Conference on Optical Communication, Brighton 1988, Part 2, p. 74–82. Institution of Electrical Engineers, Exeter 1988Google Scholar
  11. 13.11
    Matsueda, II.; Hirao, M.; Tanaka, T.P.; Nakamura, M.: Integration of optical devices with electronic circuits for high speed optical communications. In: Proc. 12th Int. Symp. Gallium Arsenide and Related Compounds, Karuizawa, Japan 1985, Inst. Phys., Conf. Ser. No. 79, p. 655–660. Bristol: Adam Hilger 1986Google Scholar
  12. 13.12
    Shibata, J.; Nakao, I.; Sakai, Y.; Kimura, S.; Hase, N.; Serizawa, H.: Monolithic integration of an InGaAsP/InP laser diode with heterojunction bipolar transistor. Appl. Phys. Lett. 45 (1984) 191–193CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Karl Joachim Ebeling
    • 1
  1. 1.Abteilung OptoelektronikUniversität UlmUlmGermany

Personalised recommendations