Skip to main content

Photodetectors

  • Chapter

Abstract

For the detection of optical radiation one converts the radiation energy into electric signals and indicates their amplitude with conventional techniques. Various mechanisms can be used, such as the generation of free charge carriers in semiconductors, thermal variation of the voltage across a pn-junction by radiation absorption or the excitation of charge carriers by the photoelectric effect, i.e. photoemission. We shall discuss photodiodes, avalanche photodiodes and photoconductors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unger, H.-G.: Optische Nachrichtentechnik. Teil II: Komponenten, Systeme, Meßtechnik. Heidelberg: Hüthig 1985

    Google Scholar 

  2. Grau, G.: Optische Nachrichtentechnik. Berlin: Springer 1981

    Google Scholar 

  3. Harth, W.; Grothe, H.: Sende-und Empfangsdioden für die Optische Nachrichtentechnik. Stuttgart: Teubner 1984

    Google Scholar 

  4. Yariv, A.: Optical Electronics. Third Edition. New York: Holt, Rinehart and Winston 1985

    Google Scholar 

  5. Capasso, F.: Physics of Avalanche Photodiodes. In: Willardson, R.K.; Beer, A. C. (Eds.): Semiconductors and Semimetals, Vol. 22, Part D, S. 2–173. New York: Academic Press 1985

    Google Scholar 

  6. Pearsall, T.P.; Pollack, M.A.: Compound Semiconductor Photodiodes. In: Willardson, R.K.; Beer, A.C. (Eds): Semiconductors and Semimetals, Vol. 22, Part D, S. 174–246. New York: Academic Press 1985

    Google Scholar 

  7. Seeger, K.: Semiconductor Physics. Berlin: Springer 1985

    Google Scholar 

  8. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. New York: McGraw Hill 1965

    Google Scholar 

  9. Wehmann, H.H.: Technologien für die Integration eines optischen Empfiingers auf Indiumphosphid-Basis. Braunschweig: Dissertation 1987

    Google Scholar 

  10. Forrest, S.R.: Performance of In x Gal_,,As y Pi_ y photodiodes with dark current limited by diffusion, generation, recombination and tunneling. IEEE J. Quant. Electron. QE-17 (1981) 217–226

    Google Scholar 

  11. Stone, J.; Cohen, L.G.: Tunable InGaAsP Lasers for spectral measurements of high bandwidth fibers. IEEE J. Quant. Electron. QE-18 (1982) 511–513.

    Google Scholar 

  12. Forrest, S.R.; Leheny, R.F.; Nahory, R.E.; Pollack, M.A.: In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling. Appl. Phys. Lett. 37 (1980) 322–325

    Google Scholar 

  13. Wang, S.Y.; Bloom, D.M.: 100 GHz bandwidth planar GaAs Schottky photodiode. Electronics Lett. 19 (1983) 554–555

    Article  ADS  Google Scholar 

  14. Wang, S.Y.: Ultra-high speed photodiode. Laser Focus/Electro-Optics, Dec. 1983, 99–106

    Google Scholar 

  15. Bulman, G.E.; Robbins, U.M.; Brennan, K.F.; Hess, K.; Stillman, G.E.: Experimental determination of impact ionization coefficients in (100) GaAs. IEEE Electron. Dev. Lett. EDL-4 (1983) 181–185

    Google Scholar 

  16. Pearsall, T.P.: Impact ionization rates for electrons and holes in Gao.471n0.53As. Appl. Phys. Lett. 36 (1980) 218–220

    Article  ADS  Google Scholar 

  17. Cook, L.W.; Bulman, G.E.; Stillman, G.E.: Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements. Appl. Phys. Lett. 40 (1982) 589–591

    Google Scholar 

  18. Emmons, R.B.: Avalanche-photodiode frequency response. J. Appl. Phys. 38 (1967) 3705–3714

    Article  ADS  Google Scholar 

  19. McIntyre, R.J.: Multiplication noise in uniform avalanche diodes. IEEE Transactions on Electron Devices ED-13 (1966) 164–168

    Google Scholar 

  20. Webb, P.P.; McIntyre, R.J.; Conradi, J.: Properties of avalanche photodiodes. RCA Review 35 (1974) 234–278

    Google Scholar 

  21. Forrest, S.R.; Smith, R.G.; Kim, O.K.: Performance of Ino.53Gao,47As/InP avalanche photodiodes. IEEE J. Quant. Electron. QE-18 (1982) 2040–2048

    Google Scholar 

  22. Forrest, S.R.; Kim, O.K.; Smith, R.G.: Optical response time of In0.53Gao.47As/InP avalanche photodiodes. Appl. Phys. Lett. 41 (1982) 95–98

    Google Scholar 

  23. Capasso, F.; Tsang, W.T.; Hutchinson, A.L.; Williams, G.F.: Enhancement of impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio. Appl. Phys. Lett. 40 (1982) 38–40

    Google Scholar 

  24. Capasso, F.: Multilayer avalanche photodiodes and solid state photomultipliers. Laser Focus/Electro-Optics, July 1984, 84–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ebeling, K.J. (1993). Photodetectors. In: Integrated Optoelectronics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78166-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78166-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78168-1

  • Online ISBN: 978-3-642-78166-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics