Skip to main content

Changes in the Biophysical Environment of Water Following Focal Brain Ischemia in the Rat

  • Conference paper
Cerebral Ischemia and Basic Mechanisms

Abstract

The biophysical environment of water in living systems is of great interest to the study of cell function. Magnetic resonance imaging (MRI) offers the ability non–invasively to assess specific parameters which are sensitive to changes in the biophysical environment of water in tissue. The degree by which water is “influenced” by cellular constituents is defined as that level of influence which is sufficient to result in a measurable difference in MRI parameters. The MRI parameters of interest include the measurement of 1H spin–spin (T2) and spin–lattice (T1) relaxation times, water density (p), the apparent diffusion coefficient of water (ADCW), and exchange rates (Kw) between “bound” and “bulk” water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buonanno FS, Pykett IL, Brady TJ, Vielma J, Burt CT, Goldman MR, Hinshaw WS, Pohost GM, Kistler JP (1983) Proton NMR imaging in experimental ischemic infarction. Stroke 14: 178–184

    Article  PubMed  CAS  Google Scholar 

  2. Mano I, Levy RM, Crooks LE, Hosobuchi Y (1983) Proton nuclear magnetic resonance imaging of acute experimental cerebral ischemia. Invest Radiol 17: 345–351

    Article  Google Scholar 

  3. Naruse S, Horikawa Y, Tanaka C, Hirakawa K, Hiroyasu N, Yoshizaki K (1982) Proton nuclear magnetic resonance studies on brain edema. J Neurosurg 56: 747–752

    Article  PubMed  CAS  Google Scholar 

  4. Bradley WG (1984) Magnetic resonance imaging of the central nervous system. Neurol Res 6: 91–106

    PubMed  Google Scholar 

  5. Black SE, Helpern JA, Kertesz A, Smith MB, Chopp M, Welch KMA (1987) Nuclear magnetic resonance imaging and spectroscopy in stroke. In: Moore WS (ed) Surgery and cerebrovascular disease. Churchill Livingston, New York, pp 217–253

    Google Scholar 

  6. Knight RA, Ordidge RJ, Helpern JA, Chopp M, Rodolosi LC, Peck D (1991) Temporal evolution of ischemic damage in rat brain measured by proton nuclear magnetic resonance imaging. Stroke 22: 802–808

    Article  PubMed  CAS  Google Scholar 

  7. Bederson JB, Bartkowski HM, Moon K, Halks-Miller M, Nishimura MC, Brant-Zawadiski M, Pitts LH (1986) Nuclear magnetic resonance imaging and spectroscopy in experimental brain edema in a rat model. J Neurosurg 64: 795–802

    Article  PubMed  CAS  Google Scholar 

  8. Go GK, Edzes HT (1975) Water in brain edema. Arch Neurol 32: 462–465

    Google Scholar 

  9. Kato H, Kogure K, Ohtomo H, Izumiyama M, Tobita M, Matsui S, Yamamoto E, Kohno H, Ikebe Y, Watanabe T (1986) Characterization of experimental ischemic brain edema utilizing proton nuclear magnetic resonance inaging. J Cereb Blood Flow Metab 6:212– 221

    Google Scholar 

  10. Horikawa Y, Naruse S, Tanaka C, Hirakawa K, Hiroyasu N (1982) Proton NMR relaxation times in ischemic brain edema. Stroke 56: 747–752

    Google Scholar 

  11. Wolff S, Balaban R (1989) Magnetization transfer contrast ( MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10: 135–144

    Google Scholar 

  12. Brint S, Jacewicz M, Kiessling M, Tanabe T, Pulsinelli W (1988) Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries. J Cereb Blood Flow Metab 8: 474–485

    Article  PubMed  CAS  Google Scholar 

  13. Frahm J, Haase A, Matthaei D (1986) Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med 3: 321–327

    Article  PubMed  CAS  Google Scholar 

  14. Le Bihan D, Breton E, Lallemard D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: applications to diffusion and perfusion in neurologic disorders. Radiology 161: 401–407

    PubMed  Google Scholar 

  15. Grad T, Mendelson D, Hyder F, Bryant RG (1990) Direct measurements of longitudinal relaxation and magnetization transfer in heterogeneous systems. J Magn Reson 86: 416–419

    Article  CAS  Google Scholar 

  16. Forsen S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39: 2892–2901

    Article  CAS  Google Scholar 

  17. Lynch LJ (1983) Water relaxation in heterogeneous and biological systems. In: Cohen JS (ed) Magnetic resonance in biology, vol 2. Wiley, New York, pp 280–296

    Google Scholar 

  18. Ordidge RJ, Helpern JA, Knight RA, Qing Z, Welch KMA (1991) Investigation of cerebral ischemia using magnetization transfer contrast ( MTC) MR imaging. Magn Reson Imaging 9: 895–902

    Google Scholar 

  19. Kaneoke Y, Masahiro F, Inao S, Saso K, Yoshida K, Motegi Y, Mizuno M, Izawa A (1987) Spin–lattice relaxation times of bound water - its determination and implications for tissue discrimination. Magn Reson Imaging 5: 415–420

    Article  PubMed  CAS  Google Scholar 

  20. Inuzuka T, Tamura A, Sato S, Kirino T, Yanagisawa K, Toyoshima I, Miyatake T (1990) Changes in the concentrations of cerebral proteins following occlusion of the middle cerebral artery in rats. Stroke 21: 917–922

    Article  PubMed  CAS  Google Scholar 

  21. Edzes HT, Samulski E (1978) The measurement of cross–relaxation effects in the proton NMR spin–lattice relaxation of water in biological systems: hydrated collagen and muscle. J Magn Reson 31: 207–229

    Article  CAS  Google Scholar 

  22. Benveniste H, Johnson GA (1991) Mechanisms of ischemia–induced changes in the brain water diffusion coefficient studied by magnetic resonance imaging and brain microdialysis. J Cereb Blood Flow Metab 11 (2): S862

    Google Scholar 

  23. Busza AL, Allen KL, Gadian DG, Crockard HA (1991) Early changes demonstrated by diffusion-weighted MR imaging in experimental cerebral ischemia. In: Proceedings of the tenth annual meeting of the Society for Magnetic Resonance in Medicine, vol 1, 328

    Google Scholar 

  24. Benveniste H, Hedlund LW, Johnson GA (1992) Mechanism of detection of acute cerebral ischemia in rats by diffusion–weighted magnetic resonance microscopy. Stroke 23: 746–754

    Article  PubMed  CAS  Google Scholar 

  25. Benga G, Morariu W (1977) Membrane defect affecting water permeability in human epilepsy. Nature 265: 636–638

    Article  PubMed  CAS  Google Scholar 

  26. Fritz OG Jr, Swift TJ (1967) The state of water in polarized and depolarized frog nerves. Biophys J 7: 675–687

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Helpern, J.A., Ordidge, R.J., Knight, R.A. (1994). Changes in the Biophysical Environment of Water Following Focal Brain Ischemia in the Rat. In: Hartmann, A., Yatsu, F., Kuschinsky, W. (eds) Cerebral Ischemia and Basic Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78151-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78151-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78153-7

  • Online ISBN: 978-3-642-78151-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics