Polymorphonuclear Leukocyte Adherence and Microvascular Reflow After Focal Cerebral Ischemia/Reperfusion

  • G. J. Del Zoppo
  • E. Mori
  • B. R. Copeland
  • W. S. Thomas
  • G. W. Schmid-Schönbein
  • E. D. Chambers
  • K. E. Arfors


Interruption of normal cerebral arterial blood flow by atherothromboemboli or thrombi in situ in a territory unprotected by adequate collaterals may lead to neuronal necrosis and tissue disruption (Ziilch 1985). Reperfusion of the occluded artery, as may occur following successful use of thrombolytic agents within hours of flow interruption (del Zoppo et al. 1988, 1992; Mori et al. 1988, 1992a,b), introduces significant additional vascular events. Particularly vulnerable is the distally (downstream) dependent microvascular bed which receives the full force of arterial reperfusion. In models of global cerebral ischemia, microvascular perfusion defects (“no-reflow”) have been demonstrated following reperfusion (Ames et al. 1968). Similar postreperfusion obstructions to reflow in the microvascular bed, manifest by loss of patency, have been described in the setting of experimental cardiac and skeletal muscle ischemia (Kloner et al. 1974; Engler et al. 1987; Schmid-Schonbein 1987). It has been postulated that such microvascular perfusion defects may result from perivascular edema or hemorrhage, endothelial cell edema, endothelial cell tags, in situ thrombosis, erythrocyte aggregation, platelet adherence and aggregation, polymorphonuclear (PMN) leukocyteendothelial cell adherence, rheologic properties of PMN leukocytes, and other mechanisms. The appearance of “no-reflow” following single artery occlusion and subsequent reperfusion (O/R), as might occur in focal cerebral ischemia, has been suspected, but only recently described (del Zoppo et al. 1991).


Focal Cerebral Ischemia Microvascular Obstruction Recombinant Tissue Plasminogen Activator Middle Cerebral Artery Territory Postcapillary Venule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames A, Wright LW, Kowade M, Thurston JM, Majors G (1968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52: 437–453Google Scholar
  2. Arfors K-E, Lundberg C, Lindbom L, Lundberg K, Beatty PG, Harlan JM (1987) A monoclonal antibody to the membrane glycoprotein complex CD 18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 69: 338–340PubMedGoogle Scholar
  3. Bednar MM, Raymond S, McAuliffe T, Lodge PA, Gross CE (1991) The role of neutrophils and platelets in a rabbit model of thromboembolic stroke. Stroke 22: 44–50PubMedCrossRefGoogle Scholar
  4. Ames A, Wright LW, Kowade M, Thurston JM, Majors G (1968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52: 437–453Google Scholar
  5. Del Zoppo GJ, Copeland BR, Harker LA et al. (1986) Experimental acute thrombotic stroke in baboons. Stroke 17: 1254–1265PubMedCrossRefGoogle Scholar
  6. Del Zoppo GJ, Ferbert A, Otis S et al. (1988) Local intra-arterial fibrinolytic therapy in acute carotid territory stroke: a pilot study. Stroke 19: 307–313PubMedCrossRefGoogle Scholar
  7. Del Zoppo G, Yu J-Q, Morrissey J, Copeland BR (1991a) Tissue factor location in the cerebral gray matter and microvasculature of the non-human primate ( Abstr ). Thromb Haemost 65: 682Google Scholar
  8. Del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang C-M (1991b) Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22: 1276–1283PubMedCrossRefGoogle Scholar
  9. Del Zoppo GJ, Poeck K, Pessin MS, 16 co-authors of the rt-PA Acute Stroke Study Group (1992) Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol 32: 78–86CrossRefGoogle Scholar
  10. Diaz FA, Ausman JI (1980) Experimental cerebral ischemia. Neurosurgery 6: 436–445PubMedCrossRefGoogle Scholar
  11. Engler RE, Schmid-Schonbein GW, Pavelec RS (1987) Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 111: 98–111Google Scholar
  12. Garcia JH, Conger KA (1987) Light and electron-microscopic features of brain ischemia. In: Wood JH (ed) Cerebral blood flow. Physiologic and clinical aspects. McGraw-Hill, New York, p 75Google Scholar
  13. Garcia JH, Lowry SL, Briggs L et al. (1983) Brain capillaries expand and repture in areas of ischemia and reperfusion. In: Reivich M, Hurtig HI (eds) Cerebrovascular diseases. Raven, New York, p 169Google Scholar
  14. Grogaard B, Schurer L, Gerdin B, Arfors KE (1989) Delayed hypoperfusion after incomplete forebrain ischemia in the rat. The role of polymorphonuclear leukocytes. J Cereb Blood Flow Metab 9: 500–505Google Scholar
  15. Ham AW, Cormack DH (1979) The circulatory system. In: Histology, 8th edn. Lippincott, Philadelphia, p 581Google Scholar
  16. Hanson SR, Harker LA (1987) Baboon models of acute arterial thrombosis. Thromb Haemost 58: 801–805PubMedGoogle Scholar
  17. Harlan JM, Killen PD, Senecal FM et al (1985) The role of neutrophil membrane glycoprotein GMP-140 in neutrophil adherence to endothelium in vitro. Blood 66: 167–178PubMedGoogle Scholar
  18. Hernandez LA, Grisham MB, Twohig B, Arfors K-E, Harlan JM, Grange DN (1987) Role of neutrophils in ischemia/reperfusion-induced microvascular injury. Am J Physiol 253: H699–H703PubMedGoogle Scholar
  19. Hossmann KA, Olsson Y (1970) Suppression and recovery of neuronal function in transient cerebral ischemia. Brain Res 22: 313–325PubMedCrossRefGoogle Scholar
  20. House SD, Lipowsky HH (1987) Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat. Microvasc Res 34: 363–379PubMedCrossRefGoogle Scholar
  21. Klein B, Kuschinsky W, Schrock H, Vetterlein F (1986) Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol 251: H1333–H1340PubMedGoogle Scholar
  22. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54: 1496–1508PubMedCrossRefGoogle Scholar
  23. Little JR, Kerr FWL, Sundt TM Jr (1975) Microcirculatory destruction in focal cerebral ischemia. Mayo Clin Proc 50: 264–270PubMedGoogle Scholar
  24. Little JR, Kerr FWL, Sundt TM Jr (1976) Microcirculatory obstruction in focal cerebral ischemia: an electron microscopic investigation in monkeys. Stroke 7: 25–30CrossRefGoogle Scholar
  25. Mori E, Tabuchi M, Yoshida T, Yamadori A (1988) Intracarotid urokinase with thromboembolic occlusion of the middle cerebral artery. Stroke 19: 802–812PubMedCrossRefGoogle Scholar
  26. Mori E, del Zoppo- GJ, Chambers JD, Copeland BR, Arfors KE (1992a) Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 23: 712–718PubMedCrossRefGoogle Scholar
  27. Mori E, Yoneda Y, Tabuchi M et al. (1992b) Intravenious recombinant tissue plasminogen activator in acute carotid artery territory stroke. Neurology 42: 976–982PubMedGoogle Scholar
  28. Nicolaides A, Zukowski A (1985) The place of computerized tomographic brain scanning in the classification of ischemic cerebral disease. In: Courbier R (ed) Basis for a classification of cerebral arterial diseases. Excerpta Medica, Amsterdam, p 59Google Scholar
  29. Schmid-Schonbein GW (1987) Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation. Fed Proc 46: 2397–2401PubMedGoogle Scholar
  30. Simpson PJ, Todd RF, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR (1988) Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti- Mol, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest 81: 624–629PubMedCrossRefGoogle Scholar
  31. Spetzler RF, Selman WR, Weinstein P et al. (1980) Chronic reversible cerebral ischemia: evaluation of a new baboon model. J Neurosurg 7: 257–261CrossRefGoogle Scholar
  32. Suzuki M, Inauen W, Kvietys PR et al. (1989) Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. Am J Physiol 257: H1740–H1745PubMedGoogle Scholar
  33. Taylor FB Jr, Hoagendorn H, Chang ACK et al. (1992) Anticoagulant and fibrinolytic activities are promoted, not retarded, in vivo after thrombin generation in the presence of a monoclonal antibody that inhibits activation of protein C. Blood 79: 1720–1728PubMedGoogle Scholar
  34. Vasthare US, Heinel LA, Rosenwasser RH, Tuma RF (1990) Leukocyte involvement in cerebral ischemia and reperfusion injury. Surg Neurol 33: 261–265PubMedCrossRefGoogle Scholar
  35. Klein B, Kuschinsky W, Schrock H, Vetterlein F (1986) Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol 251: H1333–H1340PubMedGoogle Scholar
  36. Vedder NB, Winn RK, Rice CL, Chi EY, Arfors K-E, Harlan JM (1990) Inhibition of leukocyte adherence by anti-CD 18 monoclonal antibody attenuates reperfusion injury in the rabbit ear. Proc Natl Acad Sci USA 87: 2643–2646PubMedCrossRefGoogle Scholar
  37. Zulch KJ (1985) The cerebral infarct: pathology, pathogenesis, and computed tomography. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • G. J. Del Zoppo
    • 1
  • E. Mori
    • 1
  • B. R. Copeland
    • 1
  • W. S. Thomas
    • 1
  • G. W. Schmid-Schönbein
    • 2
  • E. D. Chambers
    • 3
  • K. E. Arfors
    • 3
  1. 1.Department of Molecular and Experimental MedicineThe Scripps Research InstituteLa JollaUSA
  2. 2.AMES BioengineeringUniversity of CaliforniaSan DiegoUSA
  3. 3.La Jolla Institute of Experimental MedicineLa JollaUSA

Personalised recommendations