Skip to main content

Polymorphonuclear Leukocyte Adherence and Microvascular Reflow After Focal Cerebral Ischemia/Reperfusion

  • Conference paper
Book cover Cerebral Ischemia and Basic Mechanisms

Abstract

Interruption of normal cerebral arterial blood flow by atherothromboemboli or thrombi in situ in a territory unprotected by adequate collaterals may lead to neuronal necrosis and tissue disruption (Ziilch 1985). Reperfusion of the occluded artery, as may occur following successful use of thrombolytic agents within hours of flow interruption (del Zoppo et al. 1988, 1992; Mori et al. 1988, 1992a,b), introduces significant additional vascular events. Particularly vulnerable is the distally (downstream) dependent microvascular bed which receives the full force of arterial reperfusion. In models of global cerebral ischemia, microvascular perfusion defects (“no-reflow”) have been demonstrated following reperfusion (Ames et al. 1968). Similar postreperfusion obstructions to reflow in the microvascular bed, manifest by loss of patency, have been described in the setting of experimental cardiac and skeletal muscle ischemia (Kloner et al. 1974; Engler et al. 1987; Schmid-Schonbein 1987). It has been postulated that such microvascular perfusion defects may result from perivascular edema or hemorrhage, endothelial cell edema, endothelial cell tags, in situ thrombosis, erythrocyte aggregation, platelet adherence and aggregation, polymorphonuclear (PMN) leukocyteendothelial cell adherence, rheologic properties of PMN leukocytes, and other mechanisms. The appearance of “no-reflow” following single artery occlusion and subsequent reperfusion (O/R), as might occur in focal cerebral ischemia, has been suspected, but only recently described (del Zoppo et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames A, Wright LW, Kowade M, Thurston JM, Majors G (1968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52: 437–453

    Google Scholar 

  • Arfors K-E, Lundberg C, Lindbom L, Lundberg K, Beatty PG, Harlan JM (1987) A monoclonal antibody to the membrane glycoprotein complex CD 18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 69: 338–340

    PubMed  CAS  Google Scholar 

  • Bednar MM, Raymond S, McAuliffe T, Lodge PA, Gross CE (1991) The role of neutrophils and platelets in a rabbit model of thromboembolic stroke. Stroke 22: 44–50

    Article  PubMed  CAS  Google Scholar 

  • Ames A, Wright LW, Kowade M, Thurston JM, Majors G (1968) Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 52: 437–453

    Google Scholar 

  • Del Zoppo GJ, Copeland BR, Harker LA et al. (1986) Experimental acute thrombotic stroke in baboons. Stroke 17: 1254–1265

    Article  PubMed  Google Scholar 

  • Del Zoppo GJ, Ferbert A, Otis S et al. (1988) Local intra-arterial fibrinolytic therapy in acute carotid territory stroke: a pilot study. Stroke 19: 307–313

    Article  PubMed  Google Scholar 

  • Del Zoppo G, Yu J-Q, Morrissey J, Copeland BR (1991a) Tissue factor location in the cerebral gray matter and microvasculature of the non-human primate ( Abstr ). Thromb Haemost 65: 682

    Google Scholar 

  • Del Zoppo GJ, Schmid-Schonbein GW, Mori E, Copeland BR, Chang C-M (1991b) Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22: 1276–1283

    Article  PubMed  Google Scholar 

  • Del Zoppo GJ, Poeck K, Pessin MS, 16 co-authors of the rt-PA Acute Stroke Study Group (1992) Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol 32: 78–86

    Article  Google Scholar 

  • Diaz FA, Ausman JI (1980) Experimental cerebral ischemia. Neurosurgery 6: 436–445

    Article  PubMed  CAS  Google Scholar 

  • Engler RE, Schmid-Schonbein GW, Pavelec RS (1987) Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 111: 98–111

    Google Scholar 

  • Garcia JH, Conger KA (1987) Light and electron-microscopic features of brain ischemia. In: Wood JH (ed) Cerebral blood flow. Physiologic and clinical aspects. McGraw-Hill, New York, p 75

    Google Scholar 

  • Garcia JH, Lowry SL, Briggs L et al. (1983) Brain capillaries expand and repture in areas of ischemia and reperfusion. In: Reivich M, Hurtig HI (eds) Cerebrovascular diseases. Raven, New York, p 169

    Google Scholar 

  • Grogaard B, Schurer L, Gerdin B, Arfors KE (1989) Delayed hypoperfusion after incomplete forebrain ischemia in the rat. The role of polymorphonuclear leukocytes. J Cereb Blood Flow Metab 9: 500–505

    Google Scholar 

  • Ham AW, Cormack DH (1979) The circulatory system. In: Histology, 8th edn. Lippincott, Philadelphia, p 581

    Google Scholar 

  • Hanson SR, Harker LA (1987) Baboon models of acute arterial thrombosis. Thromb Haemost 58: 801–805

    PubMed  CAS  Google Scholar 

  • Harlan JM, Killen PD, Senecal FM et al (1985) The role of neutrophil membrane glycoprotein GMP-140 in neutrophil adherence to endothelium in vitro. Blood 66: 167–178

    PubMed  CAS  Google Scholar 

  • Hernandez LA, Grisham MB, Twohig B, Arfors K-E, Harlan JM, Grange DN (1987) Role of neutrophils in ischemia/reperfusion-induced microvascular injury. Am J Physiol 253: H699–H703

    PubMed  CAS  Google Scholar 

  • Hossmann KA, Olsson Y (1970) Suppression and recovery of neuronal function in transient cerebral ischemia. Brain Res 22: 313–325

    Article  PubMed  CAS  Google Scholar 

  • House SD, Lipowsky HH (1987) Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat. Microvasc Res 34: 363–379

    Article  PubMed  CAS  Google Scholar 

  • Klein B, Kuschinsky W, Schrock H, Vetterlein F (1986) Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol 251: H1333–H1340

    PubMed  CAS  Google Scholar 

  • Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54: 1496–1508

    Article  PubMed  CAS  Google Scholar 

  • Little JR, Kerr FWL, Sundt TM Jr (1975) Microcirculatory destruction in focal cerebral ischemia. Mayo Clin Proc 50: 264–270

    PubMed  CAS  Google Scholar 

  • Little JR, Kerr FWL, Sundt TM Jr (1976) Microcirculatory obstruction in focal cerebral ischemia: an electron microscopic investigation in monkeys. Stroke 7: 25–30

    Article  Google Scholar 

  • Mori E, Tabuchi M, Yoshida T, Yamadori A (1988) Intracarotid urokinase with thromboembolic occlusion of the middle cerebral artery. Stroke 19: 802–812

    Article  PubMed  CAS  Google Scholar 

  • Mori E, del Zoppo- GJ, Chambers JD, Copeland BR, Arfors KE (1992a) Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 23: 712–718

    Article  PubMed  CAS  Google Scholar 

  • Mori E, Yoneda Y, Tabuchi M et al. (1992b) Intravenious recombinant tissue plasminogen activator in acute carotid artery territory stroke. Neurology 42: 976–982

    PubMed  CAS  Google Scholar 

  • Nicolaides A, Zukowski A (1985) The place of computerized tomographic brain scanning in the classification of ischemic cerebral disease. In: Courbier R (ed) Basis for a classification of cerebral arterial diseases. Excerpta Medica, Amsterdam, p 59

    Google Scholar 

  • Schmid-Schonbein GW (1987) Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation. Fed Proc 46: 2397–2401

    PubMed  CAS  Google Scholar 

  • Simpson PJ, Todd RF, Fantone JC, Mickelson JK, Griffin JD, Lucchesi BR (1988) Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti- Mol, anti-CD11b) that inhibits leukocyte adhesion. J Clin Invest 81: 624–629

    Article  PubMed  CAS  Google Scholar 

  • Spetzler RF, Selman WR, Weinstein P et al. (1980) Chronic reversible cerebral ischemia: evaluation of a new baboon model. J Neurosurg 7: 257–261

    Article  CAS  Google Scholar 

  • Suzuki M, Inauen W, Kvietys PR et al. (1989) Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. Am J Physiol 257: H1740–H1745

    PubMed  CAS  Google Scholar 

  • Taylor FB Jr, Hoagendorn H, Chang ACK et al. (1992) Anticoagulant and fibrinolytic activities are promoted, not retarded, in vivo after thrombin generation in the presence of a monoclonal antibody that inhibits activation of protein C. Blood 79: 1720–1728

    PubMed  CAS  Google Scholar 

  • Vasthare US, Heinel LA, Rosenwasser RH, Tuma RF (1990) Leukocyte involvement in cerebral ischemia and reperfusion injury. Surg Neurol 33: 261–265

    Article  PubMed  CAS  Google Scholar 

  • Klein B, Kuschinsky W, Schrock H, Vetterlein F (1986) Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol 251: H1333–H1340

    PubMed  CAS  Google Scholar 

  • Vedder NB, Winn RK, Rice CL, Chi EY, Arfors K-E, Harlan JM (1990) Inhibition of leukocyte adherence by anti-CD 18 monoclonal antibody attenuates reperfusion injury in the rabbit ear. Proc Natl Acad Sci USA 87: 2643–2646

    Article  PubMed  CAS  Google Scholar 

  • Zulch KJ (1985) The cerebral infarct: pathology, pathogenesis, and computed tomography. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Del Zoppo, G.J. et al. (1994). Polymorphonuclear Leukocyte Adherence and Microvascular Reflow After Focal Cerebral Ischemia/Reperfusion. In: Hartmann, A., Yatsu, F., Kuschinsky, W. (eds) Cerebral Ischemia and Basic Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78151-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78151-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78153-7

  • Online ISBN: 978-3-642-78151-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics