Neuroprotective Effects of 5-HT1A Receptor Agonists

  • B. Peruche
  • F. Ausmeier
  • C. Backhauss
  • J. Nuglisch
  • J. H. M. Prehn
  • J. Krieglstein
Conference paper


During recent years a multiplicity of 5-HT receptor subtypes has been characterized by pharmacological studies as well as by molecular cloning of the receptors. Serotonin (5-HT) is a neurotransmitter detectable in most organisms, ranging from highly specialized humans to species with a primitive CNS [1]. This neurotransmitter is responsible for a wide diversity of physiological and behavioral modulation such as, for example, the control of blood pressure, emotional behavior, endocrine functions, perception of pain, as well as sleep and wakefulness [2]. This great palette of different serotonergic functions is due to the fact that 5-HT-containing neurons are centralized in the raphe nuclei of the brainstem, while the 5-HT-releasing fibers project to virtually all parts of the CNS [1, 2]. As the majority of these fibers release 5-HT into the extracellular space instead of establishing synaptic contact with target cells via the synaptic cleft, it is suggested that, in addition to synaptic transmission, 5-HT also induces a so-called volume transmission, which is slower but more prolonged than synaptic signaling [1].


Cerebral Ischemia Infarct Size Neuroprotective Effect Middle Cerebral Artery Occlusion Neuronal Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hen R (1992) Of mice and flies: commonalities among 5-HT receptors. TIPS 13 (4): 160–166PubMedGoogle Scholar
  2. 2.
    Gothert M, Schlicker E (1990) Identification and classification of 5-HT1 receptor subtypes. J Cardiovasc Pharmacol 15 Suppl 7: 51–57Google Scholar
  3. 3.
    Humphrey PPA, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. TIPS 14: 233–236PubMedGoogle Scholar
  4. 4.
    Aghajanian GK, Sprouse JS, Rasmussen K (1988) Electrophysiology of central serotonin receptor subtypes. In: Sanders–Bush E (ed) Serotonin receptors. Humana, Clifton, pp 225–252CrossRefGoogle Scholar
  5. 5.
    Colino A, Halliwell JV (1987) Differential modulation of three separate K+-conductances in hippocampal CA1 neurons by serotonin. Nature 328: 73–77PubMedCrossRefGoogle Scholar
  6. 6.
    Siesjo BK, Bengtsson F (1989) Calcium fluxes, calcium antagonists and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression - a unifying hypothesis. J Cereb Blood Flow Metab 9: 127–140PubMedCrossRefGoogle Scholar
  7. 7.
    Jorgensen MB, Diemer NH (1982) Selective neuronal loss after cerebral ischemia in the rat: possible role of transmitter glutamate. Acta Neurol Scand 66: 536–546PubMedCrossRefGoogle Scholar
  8. 8.
    Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1: 623–634PubMedCrossRefGoogle Scholar
  9. 9.
    Peruche B, Krieglstein J (1993) Mechanisms of drug actions against neuronal damage caused by ischemia - an overview. Prog Neuro Psychopharmacol Biol Psychiatry 17: 21–70CrossRefGoogle Scholar
  10. 10.
    Sarna GS, Obrenovitch TP, Matsumoto T, Simon L, Curzon G (1990) Effect of transient ischemia and cardiac arrest on brain extracellular dopamine and serotonin as determined by in vivo dialysis in the rat. J Neurochem 55: 937–940PubMedCrossRefGoogle Scholar
  11. 11.
    Nedergaard S, Engberg I, Flatman J A (1986) Serotonin facilitates NMDA response of cat neocortical neurons. Acta Physiol Scand 128: 323–325PubMedCrossRefGoogle Scholar
  12. 12.
    Clarke WP, DeVivo M, Beck SG, Maayani S, Goldfarb J (1987) Serotonin decreases population spike amplitude in hippocampal cells through a pertussis toxin substrate. Brain Res 410: 357–361PubMedCrossRefGoogle Scholar
  13. 13.
    Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin–1 receptors. Brain Res 346: 205–230PubMedCrossRefGoogle Scholar
  14. 14.
    Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin–2 receptors. Brain Res 346: 231–242PubMedCrossRefGoogle Scholar
  15. 15.
    Prehn JHM, Krieglstein J (1992) Potential role of 5-hydroxytryptamine1A receptors in cerebral ischemia. In: The role of neurotransmitters in brain injury. In: Globus MYT, Dietrich WD (eds) Proceedings of the official satellite symposium of Brain’91. Plenum, New York, pp 137–146Google Scholar
  16. 16.
    Andrade R, Nicoll RA (1987) Novel anxiolytics discriminate between postsynaptic serotonin receptors mediating different physiological responses on single neurons of rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 336: 5–10PubMedCrossRefGoogle Scholar
  17. 17.
    Rowan MJ, Anwyl R (1987) Neurophysiological effects of buspirone and ipsapirone in hippocampus: comparison with 5–hydroxytryptamine. Eur J Pharmacol 132: 93–96CrossRefGoogle Scholar
  18. 18.
    Welsh FA, Sakamoto T, McKee AE, Sims RE (1987) Effect of lactacidosis on pyridine nucleotide stability during ischemia in the mouse brain. J Neurochem 49: 846–851PubMedCrossRefGoogle Scholar
  19. 19.
    Backhauss C, Karkoutly C, Welsch M, Krieglstein J (1992) A mouse model of focal ischemia for screening neuroprotective drug effects. J Pharmacol Methods 27: 27–32CrossRefGoogle Scholar
  20. 20.
    Tamura A, Graham DJ, McCulloch J, Teasdale GM (1981) Focal cerebral ischemia in the rat. I. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1: 53–60Google Scholar
  21. 21.
    Smith ML, Bendek G, Dahlgren M, Roosen J, Wieloch T, Siesjo BK (1984) Models for studying long-term recovery following forebrain ischemia in the rat. II. A 2–vessel occlusion model. Acta Neurol Scand 69: 385–401PubMedCrossRefGoogle Scholar
  22. 22.
    Huettner JE, Baughman RW (1986) Primary culture of identified neurons from the visual cortex of postnatal rats. J Neurosci 6: 3044–3068PubMedGoogle Scholar
  23. 23.
    Koh J, Goldberg MP, Hartley DM, Choi DW (1980) Non-NMDA receptor-mediated neurotoxicity in cortical culture. J Neurosci 10: 693–705Google Scholar
  24. 24.
    Paul J (1975) Cell and tissue culture, 5th edn. Churchill Livingstone, EdinburghGoogle Scholar
  25. 25.
    Prehn JHM, Backhauss C, Karkoutly C, Nuglisch J, Peruche B Krieglstein J (1991) Neuroprotective properties of 5-HT1A receptor agonists in rodent models of focal and global ischemia. Eur J Pharmacol 203: 213–222Google Scholar
  26. 26.
    Bielenberg GW, Burkhardt M (1990) 5-Hydroxytryptamine1A agonists. A new therapeutic principle for stroke treatment. Stroke 21 Suppl 4:IV161–IV163Google Scholar
  27. 27.
    Nuglisch J, Karkoutly C, Peruche B, Prehn JHM, Welsch M, Mennel HD, Roβberg C, Krieglstein J (1990) Effect of the 5-HT1A agonist CM 57493 on infarct area, infarct volume and hippocampal neuronal damage after focal and global cerebral ischemia in mice and in rats. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 493–501Google Scholar
  28. 28.
    Adrien J, Lanfumey L, Gozlan H, Fattaccini CM, Hamon M (1989) Biochemical and electrophysiological evidence for an agonist action of CM 57493 at pre- and postsynaptic 5- hydroxytryptamine1A receptors in brain. J Pharmacol Exp Ther 248: 1222 - 1230PubMedGoogle Scholar
  29. 29.
    Gross G, Hanft G, Kolassa N (1987) Urapidil and some analogues with hypotensive properties show high affinities for 5-hydroxytryptamine (5-HT) binding sites of the 5-HT1A subtype and for aradrenoceptor binding sites. Naunyn Schmiedebergs Arch Pharmacol 336: 597–607PubMedCrossRefGoogle Scholar
  30. 30.
    Tamura A, Graham DI, McCulloch J, Teasdale GM (1981b) Focal cerebral ischemia in the rat. II. Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1: 61 - 68PubMedCrossRefGoogle Scholar
  31. 31.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 510: 57 - 69CrossRefGoogle Scholar
  32. 32.
    Smith ML, Auer RN, Siesjo BK (1984) The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol (Berl) 64: 319 - 322CrossRefGoogle Scholar
  33. 33.
    Bode–Greuel KM, Klisch J, Horvath E, Glaser T, Traber J (1990) Effects of 5-hydroxytryptamine agonists on hippocampal damage after transient forebrain ischemia in the mongolian gerbil. Stroke 21 Suppl 4:IV164-IV167Google Scholar
  34. 34.
    Peroutka SJ (1988) 5-Hydroxytrytamine receptor subtypes. Annu Rev Neurosci 11:45–60Google Scholar
  35. 35.
    Doods HN, Kalkman HO, de Jonge A, Thoolen M, Wilffert B, Timmermans P, van Zwieten PA (1985) Differential selectivities of RU 24969 and 8-OH-DPAT for the purposed 5-HT1A and 5-HT1B binding site. Correlation between 5-HT1A affinity and hypotensive activity. Eur J Pharmacol 112: 363–370Google Scholar
  36. 36.
    Beck SG, Clarke WP, Goldfarb J (1985) Spiperone differentiates multiple 5-hydroxytryptamine responses in rat hippocampal slices in vitro. Eur J Pharmacol 116: 195 - 201PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • B. Peruche
    • 1
  • F. Ausmeier
    • 1
  • C. Backhauss
    • 1
  • J. Nuglisch
    • 1
  • J. H. M. Prehn
    • 1
  • J. Krieglstein
    • 1
  1. 1.Institut für Pharmakologie und Toxikologie im Fachbereich Pharmazie und LebensmittelchemiePhilipps-Universität MarburgMarburg/LahnGermany

Personalised recommendations