A Deformation Model of the Mediterranean from Space Geodetic Observations and Geophysical Predictions

  • Hermann Drewes
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 112)

Abstract

SLR observations within the WEGENER/MEDLAS campaigns (solution DGFII92L01) and continuous observations of the European VLBI network (solution GLB753) are combined to derive a dense pattern of horizontal crustal motions in the Mediterranean. Including boundary conditions from geophysical predictions of global plate kinematics (NUVEL-1) we construct a deformation model of the area by means of the finite element method applied to an elastic continuum. The result is compared with a similar model which was formed earlier by exclusively geophysical information. There is a remarkable agreement, the major discrepancies are discussed.

Keywords

Europe Stein Subduction Azimuth Trench 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrosius, B.AC., Noomen, R., Wakker, K.F. (1990): First Results of WEGENER/MEDLAS Data Analysis. In: Vyskocil, P., Reigber, C., Cross, P.A. (eds.), Global and Regional Geodynamics, Springer Verlag, New York.Google Scholar
  2. Argus, D.F., Gordon, R.G. (1991): No-Net-Rotation Model of Current Plate Velocities Incorporating Plate Motion Model NUVEL-1. Geophys. Res. Lett. (18).Google Scholar
  3. DeMets, C., Gordon, R.G., Argus, D.F., Stein, S. (1990): Current Plate Motions. Geophys. J. Int. (101) 425–478.CrossRefGoogle Scholar
  4. Drewes, H. (1982): A Geodetic Approach for the Recovery of Global Kinematic Plate Parameters. Bull. Géod. (56) 70–79.CrossRefGoogle Scholar
  5. Drewes, H., Geiss, E. (1986): Deformation Models in the Mediterranean–Simulation Study for the MEDLAS Project. Proc. 2nd WEGENER/MEDLAS Conf., Athens.Google Scholar
  6. Drewes, H., Geiss, E. (1986): Deformation Models in the Mediterranean-Simulation Study for the MEDLAS Project. Proc. 2nd WEGENER/MEDLAS Conf., Athens.Google Scholar
  7. Drewes, H. (1992): Comparison of Global SLR and VLBI Solutions for Plate Kinematic and Crustal Deformation Research. Proc. Int. Workshop on Global Positioning Systems in Geosciences, Chania/Greece.Google Scholar
  8. Geiss, E. (1987): Die Lithosphäre im mediterranen Raum. Ein Beitrag zu Struktur, Schwerefeld und Deformation. Dt. Geod. Komm., Reihe C, Nr. 332, München.Google Scholar
  9. Gendt, G., Montag, H., Dick, G. (1991): Plate Kinematics in a Global and European Scale by Lageos Laser Ranging Data from 1983 to 1990. X X IUGG Gen.Ass. Symp. G2, Vienna.Google Scholar
  10. Ma, C., Ryan, J.W., Caprette, D.S. (1992): Crustal Dynamics Project Data Analysis - 1991, VLBI Geodetic Results 1979–1990. NASA Techn. Mem. 104552.Google Scholar
  11. McKenzie, D.P. (1972): Active Tectonics of the Mediterranean Region. Geophys. J. Roy. Astron. Soc. (30) 109–185.Google Scholar
  12. Minster, J.B., Jordan, T.H. (1978): Present-Day Plate Motions. J. Geophys. Res.(83) 5331–5354.CrossRefGoogle Scholar
  13. Reigber, Ch., Foerste, Ch., Schwintzer, P., Massmann, F.-H., Ellmer, W., Müller, H. (1991): Earth Orientation and Station Coordinates Computed from 10. 3 Years of Lageos Observations. Int. Earth Rot. Service (IERS) Paris.Google Scholar
  14. Reigber, Ch., Förste, Ch., Massmann, F.-H., Schwintzer, P., Müller, H. (1992): Die LAGEOS-Multijahreslösung (DGFII)92L01. DGFI Internal Report 55.Google Scholar
  15. Smith, D.E., Kolenkiewicz, R., Dunn, P.J., Robbins, J.W., Torrence, M.H., Klosko, S.M., Williamson, R.G., Pavlis, E.C., Douglas, N.B., Fricke, S.K. (1990): Tectonic Motion and Deformation from Satellite Laser Ranging to LAGEOS. J. Geophys. Res. (95) 22013–22041.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Hermann Drewes
    • 1
  1. 1.Deutsches Geodätisches Forschungsinstitut, Abt. IMünchen 22Germany

Personalised recommendations