Advertisement

Fortschritte in der diätetischen Behandlung angeborener Störungen des Aminosäure- und Kohlenhydratstoffwechsels

  • H. Böhles
Conference paper

Zusammenfassung

Die Schädigung im Rahmen angeborener Stoffwechselerkrankungen ist Folge entweder der toxischen Wirkung eines in pathologischer Weise erhöhten Stoffwechselmetaboliten oder eines durch den Defekt entstandenen Mangels. Toxische Substanzen des Zwischenstoffwechsels wie auch Mangelzustände wirken sich kurz- und langfristig störend auf die energetische Homöostase und den unbeeinträchtigten Zellaufbau aus. Die sich daraus ableitenden Prinzipien der Behandlung angeborener Stoffwechselerkrankungen beruhen somit einerseits auf der Elimination oder zumindest reduzierten Zufuhr schädigender Grundmetabolite und andererseits auf dem Ausgleich primärer oder sekundärer Mangelsituationen. Eliminationsdiäten sind die klassische Methode, die Zufuhr einer schädigenden Ausgangssubstanz zu begrenzen, dies gilt v. a. für die häufigsten Störungen des Aminosäurestoffwechsels und die klassischen Zuckerunverträglichkeiten Galaktosämie und hereditäre Fruktoseintoleranz. Neben einer limitierten Zufuhr hat in den letzten Jahren eine Verbesserung der Exkretion pathologischer Metabolite zunehmende Bedeutung erlangt. Diese Innovationen beziehen sich v.a. auf verbesserte Möglichkeiten der Detoxifikation durch Konjugation, wie z. B. mit Glyzin, Carnitin oder Benzoesäure oder die gezielten Induktionsversuche krankheitsspezifischer Enzymsysteme mit Vitaminen in pharmakologischen Mengen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Acosta PB, Fernhoff PM, Warshaw HS, Hambidge KM, Ernest A, McCabe ERB, Elsas LJ (1981) Zinc and copper status of treated children with phenylketonuria. J Parent Ent Nutr 5: 406–409CrossRefGoogle Scholar
  2. 2.
    Bachmann C (1984) Treatment of congenital hyperammonemias. Enzyme 32: 56–64PubMedGoogle Scholar
  3. 3.
    Batshaw ML (1984) Hyperammonemia. Curr Prob Pediatr 14: 1–69Google Scholar
  4. 4.
    Böhles H, Wenzel D, Shin YS (1986) Progressive cerebellar and extrapyramidal motor disturbances in galactosaemic twins. Eur J Pediatr 145: 413–417PubMedCrossRefGoogle Scholar
  5. 5.
    Böhles H, Ullrich K, Endres W, Behbehani AW, Wendel U (1991) Inadequate iron availability as a possible cause of low serum carnitine concentrations in patients with phenylketonuria. Eur J Pediatr 150: 425–428PubMedCrossRefGoogle Scholar
  6. 6.
    Brusilow SW, Valle DL, Batshaw ML (1979) New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet 11: 452–454CrossRefGoogle Scholar
  7. 7.
    Casey CE, Walravens PA, Hambidge KM (1981) Availability of zinc: loading tests with human milk, cow’s milk, and infant formulas. Pediatrics 68: 394–396PubMedGoogle Scholar
  8. 8.
    Chow CK (1979) Nutritional influences on cellular antoxidant defence systems. Am J Clin Nutr 32: 1066–1081PubMedGoogle Scholar
  9. 9.
    Darling G, Mathias P, O’Regan M, Naughten E (1992) Serum selenium levels in individuals on PKU diets. J Inher Metab Dis 15: 769–773PubMedCrossRefGoogle Scholar
  10. 10.
    Davies NT (1982) Effects of phytic acid on mineral availability. In: Vahouny FV, Kritchevsky DI (eds) Dietary fibre in health and disease. Plenum Press, New York, pp 105–116Google Scholar
  11. 11.
    Fishier K, Koch R, Donnell GN, Wenz E (1980) Developmental aspects of galactosemia from infancy to childhood. Clin Pediatr 19: 38–44CrossRefGoogle Scholar
  12. 12.
    Fraser IS, Russell P, Greco S, Robertson DM (1986) Resistant ovary syndrome and premature ovarian failure in young women with galactosaemia. Clin Reprod Fertil 4: 133–138PubMedGoogle Scholar
  13. 13.
    Francois B, Diels M, De la Brassinne M (1989) Iatrogenic skin lesions in Phenylketonurie children due to a low tyrosine intake. J Inher Metab Dis 12 [Suppl 2]: 332–334PubMedCrossRefGoogle Scholar
  14. 14.
    Fry SC (1982) Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide. Biochem J 203: 493–504PubMedGoogle Scholar
  15. 15.
    Green HL, Slonim AE, O’Neill JA Jr, Burr IM (1976) Continuous nocturnal intragastric feeding for management of type I glycogen-storage disease. N Engl J Med 294: 423–425CrossRefGoogle Scholar
  16. 16.
    Gross KC, Sams CE (1984) Changes in cell wall neutral sugar composition during fruit ripening: a species survey. Phytochemistry 23: 2457–2461CrossRefGoogle Scholar
  17. 17.
    Gross KC, Acosta PB (1991) Fruits and Vegetables are a source of galactose: implications in planning the diets of patients with galactosaemia. J Inher Metab Dis 14: 253–258PubMedCrossRefGoogle Scholar
  18. 18.
    Guttler F, Lou H (1986) Dietary problems of phenylketonuria: effect on CNS transmitters and their possible role in behaviour and neurophysiological function. J Inher Metab Dis 9: 169–177PubMedCrossRefGoogle Scholar
  19. 19.
    Hausinger D, Gerok W (1984) Funktionelle Leberzellheterogenitat. Infusions-therapie 11: 245–253Google Scholar
  20. 20.
    Hussain R, Walker RB, Layrisse M, Clark P, Finch CA (1965) Nutritive value of food iron. Am J Clin Nutr 16: 465–471Google Scholar
  21. 21.
    Iafolla AK, Gale DS, Roe CR (1990) Citrate therapy in argininosuccinate lyase deficiency. J Pediatr 117: 102–105PubMedCrossRefGoogle Scholar
  22. 22.
    Jordan MK, Brunner RL, Hunt MM, Berry HK (1985) Preliminary support for the oral administration of valine, isoleucine and leucine for phenylketonuria. Dev Med Child Neurol 27: 33–39PubMedCrossRefGoogle Scholar
  23. 23.
    Kaufmann FR, Ng WG, Lu YK, Manis F, Colm I (1991) Effect of oral uridine in classic galactosemia. 8. Intern Neonatal Screening Symp; Fairmount Resort, Australia 11–15 NovGoogle Scholar
  24. 24.
    Layrisse M, Martinez-Torres C, Roche M (1968) The effect of interaction of various foods on iron absorption. Am J Clin Nutr 21: 1175–1183PubMedGoogle Scholar
  25. 25.
    Lombeck I, Kasperek K, Feinendegen IE, Bremer KJ (1975) Serum selenium concentrations - patients with maple syrup urine disease and phenylketonuria under dietotherapy. Clin Chem 64: 57–61CrossRefGoogle Scholar
  26. 26.
    Longhi R, Rottoli A, Vittorelli A (1987) Trace elements nutriture in hyperphe- nylalaninaemic patients. Eur J Pediatr 146 [Suppl I]:A 32–A 37Google Scholar
  27. 27.
    Lou H (1985) Large doses of tryptophan and tyrosine as a potential therapeutic alternative to dietary phenylalanine restriction in phenylketonuria. Lancet 11: 150CrossRefGoogle Scholar
  28. 28.
    McCabe L, Ernest AE, Neifert MR, Yannicelli S, Nord AM, Garry PJ, McCabe ERB (1989) The management of breast feeding among infants with phenylketonuria. J Inher Metab Dis 12: 467–474PubMedCrossRefGoogle Scholar
  29. 29.
    Pomeranz Y (1973) Interaction between glycolipids and wheat flour macromolecules in breadmaking. Adv Food Res 10: 153–188Google Scholar
  30. 30.
    Posati LP, Orr ML (1976) Composition of Foods, Dairy and Egg Products. USDA Handbook Nr. 8–1, Washington DCGoogle Scholar
  31. 31.
    Roe CR, Bohan TP (1982) L-carnitine therapy in propionic acidemia. Lancet 1: 1411–1412PubMedCrossRefGoogle Scholar
  32. 32.
    Roesel RA, Mobley E, Kearse C (1982) L-Tryptophan supplementation in untreated phenylkatonuria (PKU). Fed Proc 41: 541 (A)Google Scholar
  33. 33.
    Scaglioni S, Zuccotti G, Vedovello M et al (1985) Study of serum ferritin in 58 children with classic phenylketonuria and persistent hyperphenylalaninaemia. J Inherited Metab Dis 8: 160PubMedCrossRefGoogle Scholar
  34. 34.
    Schweitzer S, Shin Y, Jakobs C, Brodehl J (1992) Long-term outcome in 134 patients with galactosemia. Eur J PediatrGoogle Scholar
  35. 35.
    Smit GPA, Berger R, Potasnick R, Moses SW, Fernandes J (1984) The dietary treatment of children with type I glycogen storage disease with slow release carbohydrate. Pediatr Res 18: 879–881PubMedCrossRefGoogle Scholar
  36. 36.
    Svanberg U, Gebre-Medhin M, Ljungqvist B, Olsson M (1977) Breast milk compositions in Ethiopian and Swedish mothers. III. Amino acids and other nitrogenous substances. Am J Clin Nutr 30: 499–507Google Scholar
  37. 37.
    Thompson GN, Francis DEM, Halliday D (1991) Acute illness in maple syrup urine disease: Dynamics of protein metabolism and implications for management. J Pediatr 119: 35–41Google Scholar
  38. 38.
    Waggoner DD, Buist NRM, Donnell GN (1990) Long-term prognosis in galactosaemia: results of a survey of 350 cases. J Inher Metab Dis 13: 802–818PubMedCrossRefGoogle Scholar
  39. 39.
    Waisbren SE (1983) Speech and language deficits in early treated children with galactosemia. J Pediatr 102: 75–77PubMedCrossRefGoogle Scholar
  40. 40.
    Waisman HA, Smith BA, Brown ES, Gerritsen T (1972) Treatment of branched chain ketoaciduria ( BCKA) during acute illness. Clin Pediatr 11: 360–364Google Scholar
  41. 41.
    Wendel U, Langenbeck U, Lombeck I, Bremer H J (1982) Maple syrup urine disease - Therapeutic use of insulin in catabolic states. Eur J Pediatr 139: 172–175PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • H. Böhles

There are no affiliations available

Personalised recommendations