Binary, Multilevel, and Hybrid Holographic Optical Array Illuminators

  • M. R. Taghizadeh
  • J. Turunen
  • H. Ichikawa
  • J. M. Miller
  • B. Robertson
  • P. Blair
  • N. Ross
  • A. Vasara
  • E. Byckling
  • T. Jaakkola
  • E. Noponen
  • J. Westerholm
Part of the ESPRIT Basic Research Series book series (ESPRIT BASIC)

Abstract

Since the recognition of the importance of optical array illuminators [1] in the realization of parallel digital optical processors, a wide variety of optical components have been designed and demonstrated that convert a single laser beam into a regularly-spaced array of M × N equal-intensity light spots. Space-variant array illuminators, which form the spot array in a Fresnel plane or an image plane of the aperture are in general easy to design and fabricate, but they require uniform plane-wave illumination that is difficult to provide. Space-invariant array illuminators generate the spot array in the Fourier plane and are therefore rather immune to the exact shape of the incident beam, but they are more difficult to design and require tight fabrication tolerances.

Keywords

Gelatin Dichromated ECSC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Streibl, N.: Beam shaping with optical array generators. J. Mod. Opt. 36 (1989) 1559–1573.CrossRefGoogle Scholar
  2. 2.
    Bartelt, H., and Case, S. K.: High-efficiency hybrid computer-generated holograms. Appl. Opt. 21 (1982) 2886–2890.CrossRefGoogle Scholar
  3. 3.
    Dammann, H., and Görtler, K.: High-efficiency in-line multiple imaging by means of multiple phase holograms. Opt. Commun. 3 (1971) 312–315.CrossRefGoogle Scholar
  4. 4.
    Turunen, J., Vasara, A., Westerholm, J., Jin, G., and Salin, A.: Optimisation and fabrication of grating beamsplitters. J. Phys. D: Appl. Phys. 21 (1988) S102–S105.CrossRefGoogle Scholar
  5. 5.
    Turunen, J., Vasara, A., and Westerholm, J.: Stripe-geometry two-dimensional Dammann gratings. Opt. Commun. 74 (1989) 245–252.CrossRefGoogle Scholar
  6. 6.
    Vasara, A., Taghizadeh, M. R., Turunen, J., Westerholm, J., Noponen, E., Ichikawa, H., Miller, J. M., Jaakkola, T., and Kuisma, S.: Binary surface-relief gratings for array illumination in digital optics. Appl. Opt. 31 (1992) 3320–3336.CrossRefGoogle Scholar
  7. 7.
    Lesem, L. P., Hirsch, P. M., and Jordan, J. A.: The kinoform: a new wavefront reconstruction device. IBM J. Res. Dev. 13 (1969) 150–155.CrossRefGoogle Scholar
  8. 8.
    Turunen, J., Vasara, A., and Westerholm, J.: Kinoform phase relief synthesis: a stochastic method. Opt. Eng. 28 (1989) 1162–1167.Google Scholar
  9. 9.
    Robertson, B., Turunen, J., Ichikawa, H., Miller, J. M., Taghizadeh, M. R., and Vasara, A.: Hybrid kinoform fanout holograms in dichromated gelatin. Appl. Opt. 30 (1991) 3711–3720.CrossRefGoogle Scholar
  10. 10.
    Robertson, B., Taghizadeh, M. R., Turunen, J., and Vasara, A.: High-efficiency, wide-bandwidth optical fanout elements in dichromated gelatin. Opt. Lett. 15 (1990) 694–696.CrossRefGoogle Scholar

Copyright information

© ECSC — EEC — EAEC, Brussels — Luxembourg 1993

Authors and Affiliations

  • M. R. Taghizadeh
    • 1
  • J. Turunen
    • 1
  • H. Ichikawa
    • 1
  • J. M. Miller
    • 1
  • B. Robertson
    • 1
  • P. Blair
    • 1
  • N. Ross
    • 1
  • A. Vasara
    • 2
  • E. Byckling
    • 2
  • T. Jaakkola
    • 2
  • E. Noponen
    • 2
  • J. Westerholm
    • 2
  1. 1.Department of PhysicsHeriot-Watt UniversityEdinburghUK
  2. 2.Department of Technical PhysicsHelsinki University of TechnologyEspooFinland

Personalised recommendations