Curvature continuous blend surfaces

  • Günther Greiner
  • Hans-Peter Seidel
Part of the IFIP Series on Computer Graphics book series (IFIP SER.COMP.)


We describe a method to generate blend surfaces which fit with continuous curvature to the primary surfaces. This blend surface is obtained as the bicubic tensor spline minimizing a variational problem. Among all the bicubic tensor splines which give a curvature continuous blend surface, the one is chosen which minimizes a bilinear functional. In Section 2 we summarize and extend the results of a previous paper in such a way that they are applicable to our problem. In Section 3 we outline in detail the procedure how to generate a blend surface based on these results.


Boundary Data Finite Dimensional Subspace Spline Surface Primary Surface Infinite Dimensional Linear System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. A. Adams, Sobolev spaces, Academic Press 1975MATHGoogle Scholar
  2. [2]
    M. I. G. Bloor, M. J. Wilson, Generating blend surfaces using partial differential equations. CAD 1989, pp. 165–171Google Scholar
  3. [3]
    R. Courant, D. Hilbert, Methoden der Mathematischen Physik, Springer-Verlag, Berlin Heidelberg 1968.Google Scholar
  4. [4]
    A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York 1969.MATHGoogle Scholar
  5. [5]
    G. Greiner, Blending techniques based on variational principles, to appear Google Scholar
  6. [6]
    C. Hoffmann, J. Hopcroft, The potential method for blending surfaces, in G. Farin (ed.), Geometric modelling: algorithms and new trends, SIAM, Philadelphia 1987, pp. 347–364.Google Scholar
  7. [7]
    H. P. Moreton, C. H. Séquin, Functional Optimization for fair surface design, Siggraph ’92, pp. 167–176Google Scholar
  8. [8]
    H. Pottmann, Scattered data interpolation based upon generalized minimum norm networks, Preprint Nr. 1232, TH Darmstadt, May 1989Google Scholar
  9. [9]
    J. R. Rossignac, A. A. G. Requicha, Constant-radius blending in solid modelling, Compu. Mech. Eng. 3 (1984), pp. 65–73.Google Scholar
  10. [10]
    G. Strang, G. J. Fix, An analysis of the finite element method, Prentic Hall, Englewood Cliffs 1973.MATHGoogle Scholar
  11. [11]
    W. Welch, A. Witkin, Variational surface modeling, Siggraph ’92, pp. 157–166Google Scholar
  12. [12]
    J. R. Woodwark, Blends in geometric modelling, in R. R. Martin (ed.), The mathematics of surfaces II, Oxford University Press, Oxford 1987, pp. 255–297.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Günther Greiner
    • 1
  • Hans-Peter Seidel
    • 1
  1. 1.IMMD IX Graphische DatenverarbeitungUniversität ErlangenErlangenGermany

Personalised recommendations