Skip to main content

Central Control of Sensory Information

  • Conference paper

Part of the book series: Research Notes in Neural Computing ((NEURALCOMPUTING,volume 4))

Abstract

Activation of afferent fibers from muscle spindles (la fibers) produces monosynaptic excitatory potentials (EPSPs) in cat motoneurons. The amplitude of these EPSPs shows fluctuations that may result from (a) intrinsic variability of transmitter release mechanisms, (b) intermittent conduction of action potentials in the intraspinal arborizations of the afferent fibers, (c) modulation of the synaptic efficacy via GABAergic interneurons synapsing with intraspinal terminals of the la fibers (presynaptic inhibition), and (d) non-linear postsynaptic interactions between the evoked Ia-EPSPs and the background synaptic activity. The possible role of these factors in controlling variability of synaptic transmission is discussed. Particular attention is given to the consequences of presynaptic inhibition on information transmission and its possible role in the control of movements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barron, D.A. and Matthews, B.H. (1938) The interpretation of potential changes in the spinal cord. J. Physiol (London), 92: 276–321.

    Google Scholar 

  • Burke, R. E. and Rudomin, P. (1977) Spinal Neurons and Synapses. In: Handbook of Physiology, Sect I. Vol I. The Nervous System. Kandel, E.R. (Ed), Am. Physiol. Soc. Bethesda, MD. pp 877–944.

    Google Scholar 

  • Carlen, P.L., Werman, R and Yaari, Y. (1980) Post-synaptic conductance increase associated with presynaptic inhibition in cat lumbar motoneurones. J. Physiol (London), 298: 539–556.

    Google Scholar 

  • Clamann, IJ.P., Rioult-Pedotti M.-S, Luscher, H.-R (1991) The influence of noise on quantal EPSP size obtained by deconvolution in spinal motoneurons of the cat. J. Neurophysiol, 65: 67–75.

    Google Scholar 

  • Clements, J.D., Forsythe, I.D., Redman, S.J. (1987) Presynaptic inhibition of synaptic potentials evoked in cat spinal motoneurones by impulses in single group la axons. J. Physiol (London), 383: 153–169.

    Google Scholar 

  • Cook, W.A., and Cangiano, A. (1972) Presynaptic and postsynaptic inhibition of spinal neurons. J. Neurophysiol 35: 389–403.

    Google Scholar 

  • Curtis, D.R. and Lodge, D.R. (1978) GABA depolarization of spinal group I afferent terminals. In: Iontophoresis and Transmitter Mechanisms in the Mammalian Central Nervous System, Ryall, R.W. and Kelly, J.S., Elsevier, Amsterdam, pp. 258–260.

    Google Scholar 

  • Curtis, D.R. and Malik, R. (1984) The effect of GABA on lumbar terminations of rubrospinal neurons in the cat spinal cord. Proc. R. Soc. Lond. B, 223: 25–33.

    Article  Google Scholar 

  • Curtis, D.R., Wilson, V.J., Malik, R. (1984) The effect of GABA on the terminations of vestibulospinal neurons in the cat spinal cord. Brain Res. 295: 372–375.

    Article  Google Scholar 

  • Davidoff, R.A., and Hackman, J.C. (1984) Spinal Inhibition. In: Handbook of the Spinal Cord, R.A. Davidoff (ed), Dekker, New York, pp. 385–459.

    Google Scholar 

  • Eccles, J.C., Magni, F. and Willis, W.D. (1962a) Depolarization of central terminals of group I afferent fibres from muscle. J. Physiol (London), 160: 62–93.

    Google Scholar 

  • Eccles, J.C., Schmidt, R.F. and Willis, W.D. (1962b) Presynaptic inhibition of the spinal monosynaptic reflex pathway. J. Physiol (London), 161: 282–297.

    Google Scholar 

  • Edwards, F.R., Harrison, P.J., Jack J.B. and Kullman, D.M. (1989) Reduction by baclofen of monosynaptic EPSPs in lumbosacral motoneurones of the anesthetized cat. J. Physiol (London), 416: 539– 556.

    Google Scholar 

  • Eguibar, J.R., Quevedo, J., Jimenez, I. and Rudomin, P. (1991) Selective modulation of the PAD of single la and lb afferents produced by surface stimulation of the motor cortex in the cat. Soc. Neurosci. Abstr., 17: 1024.

    Google Scholar 

  • Eide, E., Jurna, I., Lundberg, A. (1968) Conductance measurements from motoneurons during presynaptic inhibition. In: Structure and Function of Inhibitory Neuronal Mechanisms, Von Euler, C., Skoglund, A., Soderberg, U. (eds) Pergamon Press, New York, pp. 215–219.

    Google Scholar 

  • Frank, K. and Fuortes, M.G.F. (1957) Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed. Proc. 16: 39–40.

    Google Scholar 

  • Fyffe, R.E.W. and Light, A.R. (1984) The ultrastructure of group la afferent fibre synapses in the lumbosacral spinal cord of the cat. Brain Res, 300: 201–209.

    Article  Google Scholar 

  • Gallagher, J.P., Higashi, H., Nishi, S. (1978) Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones. J. Physiol. (London), 275: 263–282.

    Google Scholar 

  • Granit, R., Kellerth, J.O., Williams, T.D. (1964) Intracellular aspects of stimulating motoneurones by muscle stretch. J. Physiol (London), 174: 435–452.

    Google Scholar 

  • Harrison, P.J., Jack, J.J.B., Kullmann, D.M. (1989) Monosynaptic EPSPs in cat lumbosacral motoneurones from group la afferents and fibres descending in the spinal cord. J. Physiol (London), 412: 43–63.

    Google Scholar 

  • Henneman, E., Ltischer, H.R., Mathis, J. (1984) Simultaneously active and inactive synapses of single la fibres on cat spinal motoneurones. J. Physiol (London), 352: 147–161.

    Google Scholar 

  • Hultborn, H., Meunier, S., Morin, C., Pierrot-Deseilligny, E. (1987a). Assessing changes in presynaptic inhibition of la fibres: A study in man and the cat. J. Physiol (London), 389: 729–756.

    Google Scholar 

  • Hultborn, H., Meunier, S., Pierrot-Deseilligny E., Shindo, M. (1987b). Changes in presynaptic inhibition of la fibres at the onset of voluntary contraction in man. J. Physiol (London), 389: 757–772.

    Google Scholar 

  • Jack, J.J.B., Redman, S.J., Wong, K. (1981) The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group la afferents. J. Physiol (London), 321: 65–96.

    Google Scholar 

  • Jankowska, E., Johannisson, T., Lipski, J. (1981) Common interneurones in reflex pathways of ankle extensors in cat. J. Physiol (London), 310: 381– 402.

    Google Scholar 

  • Jankowska, E., McCrea, D., Rudomin, P., Sykova, E. (1981) Observations on neuronal pathways subserving primary afferent depolarization. J. Neurophysiol. 46: 506–516.

    Google Scholar 

  • Jiménez, I., Rudomin, P., Enríquez, M. (1991) Differential effects of (-)- baclofen on la and descending monosynaptic EPSPs. Exp. Brain Res. 85: 103–113.

    Article  Google Scholar 

  • Jiménez, I., Rudomin, P., Solodkin, M. (1988) PAD patterns of physiologically identified afferent fibers from the medial gastrocnemius muscle. Exp. Brain. Res., 71: 643–657.

    Article  Google Scholar 

  • Jordan, D. and Spyer, K.M. (1979) Studies on the excitability of sinus nerve afferent terminals. J. Physiol. (London), 277: 123–134.

    Google Scholar 

  • Kullman, D.M., Martin, R.L., Redman, S.J. (1989) Reduction by general anaesthetics of group la excitatory postsynaptic potentials and currents in the cat spinal cord. J. Physiol. (London), 412: 277–296.

    Google Scholar 

  • Kuno, M. (1964a) Quantal components of excitatory synaptic potentials in spinal motoneurons. J. Physiol (London), 175: 81–89.

    Google Scholar 

  • Kuno, M. (1964b) Mechanism of facilitation and depression of the excitatory synaptic potential in spinal motoneurones. J. Physiol (London), 175, 100–112.

    Google Scholar 

  • Lev-Tov, A., Fleshman, J.W., Burke, R.E. (1983) Primary afferent depolarization and presynaptic inhibition of monosynaptic la EPSPs during posttetanic potentiation. J. Neurophysiol., 50: 413–427.

    Google Scholar 

  • Lev-Tov, A., Meyers, D.E.R., Burke, R.E. (1988) Activation of GABAb receptors in the intact mammalian spinal cord mimics the effects of reduced presynaptic Ca++ influx. Proc. Natl Acad. Sci. USA 85: 5330– 5333.

    Google Scholar 

  • Lundberg, A. (1964) Supraspinal control of transmission in reflex pathways to motoneurons and primary afferents. In: Physiology of spinal neurons, Eccles, J.C. and Schade, J.P. (eds), Elsevier, Amsterdam, pp 197–219.

    Google Scholar 

  • Lüscher, H.R. (1990) Transmission failure and its relief in the spinal monosynaptic arc. In: The Segmental Motor System. Binder, M.D. and Mendell, L.M. (eds), Oxford University Press, New York, pp 328–348.

    Google Scholar 

  • Maxwell, D.J., Christie, W.M., Short, A.D., Brown, A.G. (1990) Direct observations of synapses between GABA-immunoreactive boutons and muscle afferent terminals in lamina VI of the cat’s spinal cord. Brain Res. 530: 215–222.

    Article  Google Scholar 

  • Nelson, S.G., Collatos, T.C., Niechaj, A. and Mendell, L.M. (1979) Immediate increase in Ia-motoneuron synaptic transmission caudal to spinal cord transection. J. Neurophysiol 42: 655–664.

    Google Scholar 

  • Peng, Y.Y. and Frank, E. (1989a) Activation of GABA-a receptors causes presynaptic and postsynaptic inhibition at synapses between muscle spindle afferents and motoneurons in the spinal cord of bullfrogs. J. Neurosci., 9: 1516–1522.

    Google Scholar 

  • Peng, Y.Y. and Frank, E. (1989b) Activation of GABA-b receptors causes presynaptic inhibition at synapses between muscle spindle afferents and motoneurons in the spinal cord of bullfrogs. J. Neurosci., 9: 1502–1515.

    Google Scholar 

  • Peshori, K.R., Collins III, W.F., Mendell, L.M. (1991) Change in EPSP amplitude modulation during high frequency stimulation is correlated with changes in EPSP amplitude. A baclofen study. Soc. Neurosci. Abstr., 17: 647.

    Google Scholar 

  • Price, G.W., Wilkin, G.P., Turnbul, M.J., Bowery, N.G. (1984) Are baclofen- sensitive GABAb receptors present on primary afferent terminals of the spinal cord. Nature, 307: 71–72.

    Article  Google Scholar 

  • Quevedo, J., Eguibar, J.R., Jimenez, I., Schmidt, R.F., Rudomin, P. (1991) Modulation of synaptic effectiveness of group I muscle fibers by articular afferents. Soc. Neurosci. Abstr., 17: 1024.

    Google Scholar 

  • Redman, S.J. (1990) Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol. Rev., 70: 165–198.

    Google Scholar 

  • Redman, S.J. and Walmsley, B. (1983) Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurones at identified group la synapses. J. Physiol (London), 343: 135–145.

    Google Scholar 

  • Richter, D.W., Jordan, D., Meesmann, M., Spyer, K.M. (1986) Presynaptic depolarization in myelinated vagal afferent fiber terminations in the nucleus of the tractus solitarius in the cat. Pflugers Archiv, 406: 12–19.

    Article  Google Scholar 

  • Rudomin, P. (1967) Presynaptic inhibition induced by vagal afferent volleys. J. Neurophysiol. 30: 964–981.

    Google Scholar 

  • Rudomin, P. (1980) Information Processing at Synapses in the Vertebrate Spinal Cord: Presynaptic Control of Information Transfer in Monosynaptic Pathways. In: Information Processing in the Nervous System. Pinsker, H.M. and Willis, W.D. (eds), Raven Press, New York, pp 125–155.

    Google Scholar 

  • Rudomin, P. (1990) Presynaptic control of synaptic effectiveness of muscle spindle and tendon organ afferents in the mammalian spinal cord. In: The Segmental Motor System, Binder, M.D. and Mendell, L.M. (eds), Oxford University Press, New York, pp 349–380, 1990.

    Google Scholar 

  • Rudomin P (1991) Presynaptic inhibition of muscle spindle and tendon organ afferents in mammalian spinal cord. Trends in Neurosci. 13: 499–505.

    Article  Google Scholar 

  • Rudomin, P., Burke, R. E., Nunez, R., Madrid, J., Dutton, H. (1975) Control by presynaptic correlation: a mechanism affecting information transmission from la fibers to motoneurons. J. Neurophysiol. 38: 267– 284.

    Google Scholar 

  • Rudomin, P., Engberg, I., Jimenez, I. (1981) Mechanisms involved in presynaptic depolarization of group I and rubrospinal fibers in cat spinal cord. J. Neurophysiol. 46: 532–548.

    Google Scholar 

  • Rudomin, P., Jimenez, I., Enriquez, M. (1991). Effects of stimulation of group I afferents on heterosynaptic facilitation of monosynaptic reflexes produced by la and descending inputs: a test for presynaptic inhibition. Exper. Brain Res. 85: 93–102.

    Google Scholar 

  • Rudomin, P., Jimenez, I., Solodkin, M., Duenas, S. (1983) Sites of action of segmental and descending control of transmission on pathways mediating PAD of la and lb afferent fibers in the cat spinal cord. J Neurophysiol. 50: 743.

    Google Scholar 

  • Rudomin, P. and Madrid, J. (1972) Changes in correlation between monosynaptic responses of single motoneurons and in information transmission produced by conditioning volleys to cutaneous nerves. J. Neurophysiol. 35: 44–54.

    Google Scholar 

  • Rudomin, P., Nunez, R., Madrid, J. (1975) Modulation of synaptic effectiveness of la and descending fibers in the cat spinal cord. J. Neurophysiol., 38. 1181–1195.

    Google Scholar 

  • Rudomin, P., Solodkin, M., Jimenez, I. (1987) Synaptic potentials of primary afferent fibers and motoneurons evoked by single intermediate nucleus interneurons in the cat spinal cord. J. Neurophysiol. 57: 1288–1313.

    Google Scholar 

  • Rudomin, P., Solodkin, M., Jimenez, I. (1986) Response patterns of group la and lb fibers to cutaneous and descending inputs in the cat spinal cord. J. Neurophysiol 56: 987–1006.

    Google Scholar 

  • Schmidt, R.F. (1971) Presynaptic inhibition in the vertebrate central nervous system. Ergebn. Physiol 63: 20–101.

    Article  Google Scholar 

  • Solodkin, M., Jimenez, I., Collins III, W.F., Mendell, L.M., Rudomin, P. (1991) Interaction of baseline synaptic noise and la EPSPs: evidence for appreciable negative-correlation under physiological conditions. J. Neurophysiol., 65: 927–945.

    Google Scholar 

  • Walmsley, B. and Nicol, M.J. (1991) The effects of Ca2+, Mg2+ and kynurenate on primary afferent synaptic potentials evoked in cat spinal cord neurones in vivo. J. Physiol (London), 433: 409–420.

    Google Scholar 

  • Wong, K. and Redman, S.J. (1980) The recovery of a random variable from a noisy record with application to the study of fluctuations of synaptic potentials. J. Neurosci. Meth., 2: 389–409.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rudomin, P. (1993). Central Control of Sensory Information. In: Rudomin, P., Arbib, M.A., Cervantes-Pérez, F., Romo, R. (eds) Neuroscience: From Neural Networks to Artificial Intelligence. Research Notes in Neural Computing, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78102-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78102-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56501-7

  • Online ISBN: 978-3-642-78102-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics