Skip to main content

Outline for a Theory of Motor Behavior: Involving Cooperative Actions of the Cerebellum, Basal Ganglia, and Cerebral Cortex

  • Conference paper

Part of the book series: Research Notes in Neural Computing ((NEURALCOMPUTING,volume 4))

Abstract

Cerebellum means little brain. Cerebrum, of course, also means brain, but has come to refer primarily to the cerebral cortex and basal ganglia. One of the most vexing problems in brain physiology remains identifying the roles of these three structures in the selection and control of behavior. Unfortunately, researchers often study the cerebellum, cerebral cortex and basal ganglia independently. Indeed, many motor systems specialists often use the term “cortex” without modification despite the fact that both the forebrain and cerebellum have a cortex important in the control of movement. We set in this chapter, therefore, the objective of collective consideration of these three parts of the brain and their cooperative control functions. Our outline sketches one speculative view of how the cerebellum, basal ganglia and cerebral cortex might process information in a cooperative manner to establish goals, plan strategies and then program and implement a complex motor behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus, J.S. (1971) A theory of cerebellar function. Math. Biosci. 10: 25–61.

    Article  Google Scholar 

  • Alexander, G.E., Crutcher, M.D. and DeLong, M.R. (1991) Basal ganglia-thalamocortical circuits: parallel subtrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 85: 119–145.

    Article  Google Scholar 

  • Alexander, G.E., DeLong, M.R. and Strick, P.L. (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neuroscience 9: 357–381.

    Article  Google Scholar 

  • Alexander, G.E., Koliatsos, V.E., Martin, L.J., Hedreen, J., Hamada, I. and DeLong, M.R. (1988) Organization of primate basal ganglia “motor circuit”: I Motor cortex (MC) and supplementary motor area (SMA) project to different compartments of putamen. Soc. Neurosci. Abstr. 14: 720.

    Google Scholar 

  • Allen, G.I. and Tsukahara, N. (1974) Cerebrocerebellar communication systems. Physiol. Rev. 54: 957–1006.

    Google Scholar 

  • Anderson, J.A., Silverstein, J.W., Ritz, S.A. and Jones, R.S. (1977) Distinctive features, categorical perception, and probability learning: some applications of a neural model. Psych. Rev. 84: 413–451.

    Article  Google Scholar 

  • Arbib, Michael A. (1987) Brains, Machines, and Mathematics, 2nd Ed. New York, Springer- Verlag.

    Google Scholar 

  • Berthier, N.E., Singh, S.P., Barto, A.G. and Houk, J.C. (1991) Distributed representation of limb motor programs in arrays of adjustable pattern generators. Center Neuronal Pop. Beh. Tech. Rept. 3, Inst. Neurosci., Northwestern U.

    Google Scholar 

  • Darian-Smith, C., Darian-Smith, I. and Cheema, S.S. (1990) Thalamic projections to sensorimotor cortex in the macaque monkey: use of multiple retrograde fluorescent tracers. J. Comp. Neurol. 299: 17–46.

    Article  Google Scholar 

  • DeLong, M.R., Hamada, I., Alexander, G.E., Koliatsos, V., Martin, I.J. and Hedreen, J. (1988) Organization of primate basal ganglia “motor circuit”: 3. Relations of striatal microexcitable zones to afferent and efferent projections. Soc. Neurosci. Abstr. 14: 721.

    Google Scholar 

  • Douglas, R.J. and Martin, K.A.C. (1990) Neocortex. In: G.M. Shepherd (ed) The Synaptic Organization of the Brain. New York, Oxford Univ. Press, pp 389–438.

    Google Scholar 

  • Favorov, O., Sakamoto, T., Asanuma, H. (1988) Functional role of corticoperipheral loop circuits during voluntary movements in the monkey: a preferential bias theory. J. Neurosci. 8: 3266–3277.

    Google Scholar 

  • Feldman, J.A. and Ballard, D.H. (1982) Connectionist models and their properties. Cognitive Sci. 6: 205–254.

    Article  Google Scholar 

  • Flaherty, A.W. and Graybiel, A.M. (1991a) Corticostriatal transformations in the primary somatosensory system. Projections from physiologically mapped body-part representations. J. Neurophysiol. 66: 1249–1263.

    Google Scholar 

  • Flaherty, A.W. and Graybiel, A.M. (1991b) A second input system for body representations in the primate striatal matrix. Soc. Neurosci. Abstr. 17: abstract 520. 6.

    Google Scholar 

  • Gentilucci, M. and Rizzolatti, G. (1989) Cortical motor control of arm and hand movements. In: Vision in Action: The Control of Grasping, ed. M.A. Goodale, Ablex Publ. Corp., Norwood NJ., pp. 147–162.

    Google Scholar 

  • Georgopoulos, A.P. (1988) Neural integration of movement: role of motor cortex in reaching. FASEB Journal 2: 2849–2857.

    Google Scholar 

  • Georgopoulos, A.P. (1991) Higher order motor control. Annu. Rev. Neurosci. 14: 361–377.

    Article  Google Scholar 

  • Gilbert, C. and Wiesel, T.N. (1981) Laminar specialization and intracortical connections in cat primary visual cortex. In: F.O. Schmitt, F.G. Worden, G. Adelman, S.G. Dennis (eds) The Organization of the Cerebral Cortex. Cambridge, Mass., MIT Press, pp. 163–191.

    Google Scholar 

  • Goldman-Rakic, P.S. and Porrino, L.J. (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J. Comp. Neurol. 242: 535–560.

    Article  Google Scholar 

  • Graybiel, A.M. (1984) Neurochemically specified subsystems in the basal ganglia. In: Evered, D., O’Connor, M., eds. Functions of the Basal Ganglia, Ciba Foundation Symposium 107, London: Pitman Press, pp. 114–144.

    Google Scholar 

  • Grossberg, S. (1980) How does a brain build a cognitive code? Psych. Rev. 87: 1–51.

    Article  Google Scholar 

  • Grossberg, S. and Kuperstein, M. (1989) Neural Dynamics of Adaptive Sensory-motor Control. New York, Pergamon Press.

    Google Scholar 

  • Hedreen, J.C., Martin, I.J., Koliatsos, V.E., Hamada, I., Alexander, G.E. and DeLong, M.R. (1988) Organization of primate basal ganglia “motor circuit”: 4. Ventrolateral thalamus links internal pallidum (GPi) and supplementary motor area (SMA). Soc. Neurosci. Abstr. 14: 721.

    Google Scholar 

  • Heimer, L., Alheid, G.F. and Zaborszky, L. Basal ganglia. (1985) In: Paxinos, G., ed. The Rat Nervous System, Sydney: Academic Press, pp. 37–86.

    Google Scholar 

  • Hoebel, B.G. (1988) Neuroscience and motivation: pathways and peptides that define motivational systems. In: R.C. Atkinson, R.J. Herrnstein, G. Lindzey, R.D. Luce (eds) Stevens’ Handbook of Experimental Psychology. 2nd Ed. Volume 1: Perception and Motivation, Ch. 11. New York, John Wiley & Sons, pp. 547–625.

    Google Scholar 

  • Holsapple, J.W., Preston, J.B. and Strick, P.L. (1991) The origin of thalamic inputs to the “hand” representation in the primary motor cortex. J. Neurosci. 11: 2644–2654.

    Google Scholar 

  • Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79: 2554–2558.

    Article  MathSciNet  Google Scholar 

  • Houk, J.C. (1989) Cooperative control of limb movements by the motor cortex, brainstem and cerebellum. In: R.M.J. Cotterill (ed) Models of Brain Function. Cambridge, Cambridge Univ Press, pp. 309–325.

    Google Scholar 

  • Houk, J.C. and Barto, A.G. (1992) Distributed sensorimotor learning. In: J. Requin and G.E. Stelmach (eds), Tutorials in Motor Behavior II, Elsevier Science Publishers B.V., Amsterdam, The Netherlands.

    Google Scholar 

  • Houk, J.C., Singh, S.P., Fisher, C. and Barto, A.G. (1990) An adaptive sensorimotor network inspired by the anatomy and physiology of the cerebellum. In: Miller, W.T., Sutton, R.S., Werbos, P.J. (eds) Neural Networks for Control, Ch 13. Cambridge, Mass., MIT Press, pp. 301–348.

    Google Scholar 

  • Ito, M. (1989) Long-term depression. Ann. Rev. Neurosci. 12: 85–102.

    Article  Google Scholar 

  • Iwamura, Y., Tanaka, M., Sakamoto, M., Hikosaka, O. (1985) Vertical neuronal arrays in the postcentral gyrus signaling active touch: a receptive field study in the conscious monkey. Exp. Brain Res. 58: 412–420.

    Google Scholar 

  • Jones, E.G., Coulter, J.D., Burton, H. and Porter, R. (1977) Cells of origin and terminal distribution of corticostriatal fibers arising in the sensorimotor cortex of monkeys. J. Comp. Neurol. 173: 53–80.

    Article  Google Scholar 

  • Kawato, M., Furukawa, K. and Suzuki, R. (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol. Cybern. 56: 1–17.

    Article  Google Scholar 

  • Kievit, J. and Kuypers, H.G.J.M. (1977) Organization of the thalamocortical connexions to the frontal lobe in the rhesus monkey. Exp. Brain Res. 9: 299–322.

    Google Scholar 

  • Kohonen, T. (1972) Correlation matrix memories. IEEE Trans. Computers C-21: 353–359.

    Google Scholar 

  • Koliatsos, V.E., Martin, L.J., Hedreen, J., Alexander, G.E., Hamada, I., Price, D.L. and DeLong, M.R. (1988) Organization of primate basal ganglia “motor circuit”: 2. Putaminal projections to internal (GPi) and external (GPe) globus pallidus originate in distinct neuronal populations within the matrix compartment. Soc. Neurosci. Abstr. 14: 720.

    Google Scholar 

  • Kornhüber, H.H. (1971) Motor functions of cerebellum and basal ganglia: the cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernetik 8: 157–162.

    Article  Google Scholar 

  • Künzle, H. (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain, Behav., Evol. 15: 185–234.

    Google Scholar 

  • Llinás, R.R. and Walton, K.D. (1990) Cerebellum. In: G.M. Shepherd (ed) The Synaptic Organization of the Brain. New York, Oxford Univ. Press, pp 214–245.

    Google Scholar 

  • Ljungberg, T., Apicella, P. and Schultz, W. (1991) Responses of monkey dopamine neurons to external stimuli: changes with learning. In: G. Bernardi, M.B. Carpenter, G. Di Chiara (eds) The Basal Ganglia. Vol. 3. New York, Plenum Press, pp 469–476.

    Google Scholar 

  • Marr, D. (1969) A theory of cerebellar cortex. J. Physiol. London 202: 437–470.

    Google Scholar 

  • Matelli, M., Luppino, G., Fogassi, L. and Rizzolatti, G. (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. J. Comp. Neurol. 280: 468–488.

    Article  Google Scholar 

  • McClelland, J.L. and Rumelhart, D.E. (1981) An interactive activation model of context effects in letter perception: part 1. An account of basic findings. Psych. Rev. 88: 375–407.

    Article  Google Scholar 

  • Minsky, M.L. and Papert, S.A. (1988) Perceptrons, 3rd ed. Cambridge, Mass, MIT Press.

    MATH  Google Scholar 

  • Mitz, A.R., Godschalk, M., and Wise, S.P. (1991) Learning-dependent neuronal activity in the premotor cortex of rhesus monkeys. J.Neuroscience 11: 1855–1872.

    Google Scholar 

  • Mountcastle, V.B. (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: G.M. Edelman, B.B. Mountcastle (eds) The Mindful Brain. Cambridge, Mass., MIT Press, pp 7–50.

    Google Scholar 

  • Muakassa, K.F. and Strick, P.L. (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized “premotor” areas. Brain Res. 177: 176–182.

    Article  Google Scholar 

  • Mushiake, H., Inase, M. and Tanji, J. (1991) Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally directed sequential movements. J. Neurophysiol. 66: 705–718.

    Google Scholar 

  • Nambu, A., Yoshida, S. and Jinnai, K. (1988) Projection on the motor cortex of thalamic neurons with pallidal input in the monkey. Exp. Brain Res. 71: 658–662.

    Article  Google Scholar 

  • Okano, K. and Tanji, J. (1987) Neuronal activities in primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement. Exp. Brain Res. 66: 155–166.

    Article  Google Scholar 

  • Passingham, R.E. (1987) Two cortical systems for directing movement. In: Motor Areas of Cerebral Cortex, Ciba Foundation Symposium 132, eds. G. Bock, M. O’Conner, and J. Marsh, Chichester: Wiley, pp. 151–164.

    Google Scholar 

  • Passingham, R.E. (1988) Premotor cortex and preparation for movement. Exp. Brain Res. 70: 590–596.

    Article  Google Scholar 

  • Passingham, R.E., Chen, Y.C. and Thaler, D. (1989) Supplementary motor cortex and self- initiated movement. In: Neural Programming., ed. M. Ito, Tokyo: Japan Scientific Societies Press, pp. 13–24.

    Google Scholar 

  • Rosenblatt, F. (1962) Principles of Neurodynamics. New York, Spartan Books.

    MATH  Google Scholar 

  • Russchen, F.T., Amaral, D.G. and Price, J.L. (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J. Comp. Neurol. 256: 175–210.

    Article  Google Scholar 

  • Schell, G.R. and Strick, P.L. (1984) Origin of thalamic input to the arcuate premotor and supplementary motor areas. J. Neurosci. 4: 539–560.

    Google Scholar 

  • Selemon, L.D. and Goldman-Rakic, P.S. (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J. Neurosci. 5: 776–794.

    Google Scholar 

  • Sherman, S.M. and Koch, C. (1990) Thalamus. In: G.M. Shepherd (ed) The Synaptic Organization of the Brain. New York, Oxford Univ. Press, pp 246–278.

    Google Scholar 

  • Shinoda, Y. and Kakei, S. (1989) Distribution of terminals of thalamocortical fibers originating from the ventrolateral nucleus of the cat thalamus. Neurosci. Letters 96: 163–167.

    Article  Google Scholar 

  • Shook, B., Schlag-Rey, M. and Schlag, J. (1991) Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei. J. Comp. Neurol. 307: 562–583.

    Article  Google Scholar 

  • Weinrich, M., Wise, S.P. and Mauritz, K.-H. (1984) A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107: 385–414.

    Article  Google Scholar 

  • Wilson, C.J. (1990) Basal Ganglia. In: G.M. Shepherd (ed) The Synaptic Organization of the Brain. New York, Oxford Univ. Press, pp. 279–316.

    Google Scholar 

  • Wise, S.P. (1984) The nonprimary motor cortex and its role in the cerebral control movement. In: Dynamic Aspects of Neocortical Function, eds. G. Edelman, W.E. Gall and W.M. Cowan. Neurosciences Institute, New York: Wiley, pp. 525–555.

    Google Scholar 

  • Wise, S.P. (1985) The primate premotor cortex: past, present and preparatory. Annual Reviews of Neuroscience 8: 1–19.

    Article  Google Scholar 

  • Wise, S. P., Alexander, G. E., Altman, J. S., Brooks, V. B., Freund, H.-J., Fromm, C. J., Humphrey, D. R., Sasaki, K., Strick, P. L., Tanji, J., Vogel, S. and Wiesendanger, M. (1991) What are the specific functions of the different motor areas? In: Motor Control: Concepts and Issues, D. R. Humphrey and H.-J. Freund, eds., John Wiley: Chichester, pp. 463–485.

    Google Scholar 

  • Zemanick, M.C., Strick, P.L. and Dix, R.D. (1991) Direction of transneuronal transport of herpes simplex virus 1 in the primate motor system is strain-dependent. Proc. Nat. Acad. Sci. 88: 8048–8051.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Houk, J.C., Wise, S.P. (1993). Outline for a Theory of Motor Behavior: Involving Cooperative Actions of the Cerebellum, Basal Ganglia, and Cerebral Cortex. In: Rudomin, P., Arbib, M.A., Cervantes-Pérez, F., Romo, R. (eds) Neuroscience: From Neural Networks to Artificial Intelligence. Research Notes in Neural Computing, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78102-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78102-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56501-7

  • Online ISBN: 978-3-642-78102-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics