Modulatory effects on Prey-Recognition in Amphibia: A Theoretical-Experimental study

  • Francisco Cervantes-Pérez
  • Alberto Herrera-Becerra
  • Mayra García-Ruíz
Part of the Research Notes in Neural Computing book series (NEURALCOMPUTING, volume 4)

Abstract

In this paper, we follow an hibrid approach —a theory- experiment cycle— for the study of visuomotor coordination in amphibians (e.g., toads). We use a neural net model of the reti-no-tectal-pretectal interactions to analyze, via computer simulations and mathematical analyses, how its activation dynamics may underly prey-catching behavior. In particular, we study how changes in the hypothesized pretectal inhibitory effect over tectum might account for the modulation of prey-like stimuli discrimination. Our analysis shows, at the tectal level, that the efficacy of the stimulus characteristics (e.g., form and velocity) to produce the proper discrimination between different stimuli (e.g., worm-like and square) depends on the intensity and temporal characteristics of pretectal activation. Then, we explored this prediction experimentally, in toad Bufo marinus horribilis, by changing some of the motivational factors that affect toad’s response frequency to prey-like stimuli. Animals under different maintenance conditions in the laboratory (i.e., relationship between feeding and stimulation time) were stimulated with worm- like and square stimuli moving at different velocities. We found that the stimulus characteristics might become irrelevant to produce optimal prey-catching behavior. These combined, mathematical and experimental, analyses allow us to postulate that toad’s motivational state might modulate the intensity and temporal characteristics of pretectal activation.

Keywords

Cage Retina Tempo Controled 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. an der Heiden U, Roth G (1989) Retina and optic tectum in amphibians: a mathematical model and simulation studies. In: Ewert J-P, Arbib MA (eds) Visuomotor Coordination: amphibians, models and robots. Plenum Press, New York, pp. 243–267.Google Scholar
  2. Arbib MA (1989) The metaphorical brain 2: neural networks and beyond. Wiley Interscience, New York.MATHGoogle Scholar
  3. Betts B (1989) The T5 base modulator hypothesis: a dynamic model of T5 neuron function in toads. In: Ewert J-P, Arbib MA (eds) Visuomotor Coordination: amphibians, models and robots. Plenum Press, New York, pp. 269–307.Google Scholar
  4. Cervantes-Pérez F, Lara R, Arbib MA (1985) A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. J Theor Biol 113: 117–152.CrossRefGoogle Scholar
  5. Cervantes-Pérez F, Arbib MA (1990) Stability and parameter dependency analyses of a Facilitation Tecatl Column (FTC) model. J Math Biol, 29: 1–32.MathSciNetMATHCrossRefGoogle Scholar
  6. Cervantes-Pérez F, Guevara-Pozas D, Herrera-Becerra A (1991) Modulation of prey-catching behavior in toads: data and modeling. In: Arbib MA, Ewert J-P (eds) Visual structures and integrated functions. Springer-Verlag, Berlin, Heidelberg, New york, pp. 397–415.Google Scholar
  7. Didday RL (1976) A model of visuomotor mechanisms in the frog optic tectum. Math Biosci, 30: 169–180.CrossRefGoogle Scholar
  8. Ewert J-P (1968) Der Einflub von Zwischenhirndefekten auf die Visuomotorik im Beute — und Fluchtverhalten der Erdrote (Bufo bufo L). Z. Vergl Physiol, 61: 41–70.Google Scholar
  9. Ewert J-P (1971) Single unit response of the toad (Bufo America- nus) caudal thalamus to visual objects. Z Vergl Physiol, 74: 81–102.CrossRefGoogle Scholar
  10. Ewert J-P (1976) The visual system of the toad: behavioral and physiological studies on a pattern recognition system. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 141–202.Google Scholar
  11. Ewert J-P (1980) Neuroethology: an introduction to the neurophy- siological fundamentals of behavior. Springer - Verlag. Berlin Heidelberg New York.Google Scholar
  12. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–416.Google Scholar
  13. Ewert J-P (1987) Neuroethology of releasing mechanisms: prey- catching in toads. Behav Brain Sci, 10: 337–405.CrossRefGoogle Scholar
  14. Ewert J-P (1989) The release of visual behavior in toads: stages of parallel/hierarchical information processing. In: Ewert J-P, Arbib MA (eds) Visuomotor Coordination: amphibians, models and robots. Plenum Press, New York, pp. 39–120.Google Scholar
  15. Ewert J-P, Seelen Wv (1974) Neurobiologie und Systemtheorie eines visuellen Mustererkennungs-mechanismus bei Kroten. Kybernetik, 14: 167–183.CrossRefGoogle Scholar
  16. Ewert J-P, Borchers H-W, Wietersheim Av (1978) Question of prey feature detectors in the toad’s Bufo bufo (L) visual system: a correlation analysis. J Comp Physiol, 126: 43–47.CrossRefGoogle Scholar
  17. Finkestädt T (1989) Stimulus specific habituation in toads: 2DG studies and lesion experiments. In: Ewert J-P, Arbib MA (eds) Visuomotor Coordination: amphibians, models and robots. Plenum Press, New York, pp. 767–798.Google Scholar
  18. García-Ruiz M, Cervantes-Pérez F (1992) Motivation, learning, and prey-catching behavior in toad Bufo marinus horribilis (in preparation).Google Scholar
  19. Grüsser O-J, Grusser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 298–385.Google Scholar
  20. Grüsser-Cornehls U (1984) The neurophysiology of the amphibian optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 211–245.Google Scholar
  21. Ingle DJ (1976) Spatial vision in anurans. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 119–140.Google Scholar
  22. Lara R, Arbib MA (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus-specific habituation in toads. Biol Cybern, 51: 223–237.CrossRefGoogle Scholar
  23. Lara R, Arbib MA, Cromarty A (1982) The role of the tectal column in facilitation of amphibian prey-catching behavior: a neural model. J Neurosci, 2: 521–530.Google Scholar
  24. Matsumoto N (1989) Morphological and physiological studies of tectal and pretectal neurons in the frog. In: Ewert J-P, Arbib MA (eds) Visuomotor Coordination: amphibians, models and robots. Plenum Press, New York, pp. 201–222.Google Scholar
  25. Merkel-Harff C, Ewert J-P (1991) Learning related modulation of toads. In: Arbib MA, Ewert J-P (eds) Visual structures and integrated functions. Springer-Verlag, Berlin, Heidelberg, New york, pp. 417–426.Google Scholar
  26. Roth G, Jordan M (1982) Response characteristics and stratification of tectal neurons in the toad Bufo bufo (L). Exp Brain Res, 45: 393–398.CrossRefGoogle Scholar
  27. Schürg-Pfeiffer E, Ewert J-P (1981) Investigations of neurons involved in the analysis of Gestalt prey features in the frog Rana temporaria. J Comp Physiol, 141: 139–152.CrossRefGoogle Scholar
  28. Székely G, Lázár G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Francisco Cervantes-Pérez
    • 1
  • Alberto Herrera-Becerra
    • 2
  • Mayra García-Ruíz
    • 2
  1. 1.Centro de InstrumentosUniversidad Nacional Autonoma de MexicoMéxico D.F.Mexico
  2. 2.Division Academica de ComputacionInstituto Tecnologico Autonomo de MexicoSan Angel, TizapánMexico

Personalised recommendations