Entrainment of the Spinal Neuronal Network Generating Locomotion

  • Gonzalo Viana Di Prisco
  • Peter Wallén
  • Sten Grillner
Conference paper
Part of the Research Notes in Neural Computing book series (NEURALCOMPUTING, volume 4)


To understand the neural substrate of a behavior such as locomotion we need to know the neural systems involved, the membrane properties of the neurons generating the behavioral activity pattern, and the interconnections and synaptic interactions among contributing neurons. In this task the best results have been achieved by combining experiments in relatively simple experimental preparations with computer simulations and mathematical analysis of neural models (Grillner et al, 1986; Cohen et al, 1988).


Central Pattern Generator Edge Cell Lucifer Yellow Stretch Receptor Local Excitability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alford, S. & Williams, T.L. (1987) Inhibitory synaptic input to edge cells during fictive locomotion. Brain Res. 409: 139–142.CrossRefGoogle Scholar
  2. Andersson, O., Forssberg, H., Grillner, S., & Wallén, P. (1981) Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat. Can. J. Physiol. Pharmacol. 59: 713–726.CrossRefGoogle Scholar
  3. Arbib, M.A. (1982) Modelling neural mechanisms of visuomotor coordination in frog and toad. In Competition and Cooperation in Neural Nets, S. Amari and M.A. Arbib (Eds.), Lecture Notes in Biomathematics Vol. 45, Springer-Verlag, pp. 342–370.Google Scholar
  4. Brodin, L. & Grillner, S. (1990) The lamprey CNS in vitro, an experimentally amenable model for synaptic transmission and integrative functions. In Preparations of vertebrate central nervous system in vitro, H. Jahnsen (Ed.), Wiley, New York, pp. 103–153.Google Scholar
  5. Brodin, L., Tråven, H.G.C., Lansner, A., Wallén, P., Ekeberg, Ö & Grillner, S. (1991) Computer simulations of N-Methyl-D-Aspartate receptor-induced membrane properties in a neuron model. J. Neurophysiol. 66: 473–484.Google Scholar
  6. Buchanan, J.T., Brodin, L., Hökfelt, T., van Dongen, P.M.A. & Grillner, S. (1987) Survey of neuropeptide-like immunoreactivity in the lamprey spinal cord. Brain Res. 408: 299–302.CrossRefGoogle Scholar
  7. Buchanan, J.T. (1992) Neural network simulations of coupled locomotor oscillators in the lamprey spinal cord. Biol. Cybern. 66: 367–374.CrossRefGoogle Scholar
  8. Cohen, A.H., Rossignol, S. & Grillner, S. (Eds.) Neural Control of Rhythmic Movements in Vertebrates, New York: John Wiley & Sons, Inc., 1988.Google Scholar
  9. Dehaene, S., Changeux, J-P. & Nadal, J-P. (1987) Neural networks that learn temporal sequences by selection. Proc. Nat. Acad. Sci. USA 84: 2727–2731.MathSciNetCrossRefGoogle Scholar
  10. Ekeberg, Ö, Wallén, P., Lansner, A., Tråven, H., Brodin, L. & Grillner, S. (1991) A computer based model for realistic simulations of neural networks. I. The single neuron and synaptic interaction. Biol. Cybern. 65: 81–90.CrossRefGoogle Scholar
  11. Georgopoulos, A.P. & Grillner, S. (1989) Visuomotor coordination in reaching and locomotion. Science 245: 1209–1210.CrossRefGoogle Scholar
  12. Gracco, V.L. & Abbs, J.H. (1988) Central patterning of speech movements. Exp. Brain Res. 71: 515–526.CrossRefGoogle Scholar
  13. Grillner, S., McClellan, A. & Perret, C. (1981) Entrainment of the spinal pattern generators for swimming by mechanosensitive elements in the lamprey spinal cord in vitro. Brain Res. 217: 380–386.CrossRefGoogle Scholar
  14. Grillner, S., McClellan, A. & Sigvardt, K. (1982) Mechanosensitive neurones in the spinal cord of the lamprey. Brain Res. 235: 169–173.CrossRefGoogle Scholar
  15. Grillner, S. & Wallén, P. (1982) On peripheral control mechanisms acting on the central pattern generators for swimming in the dogfish. J. Exp. Biol. 98: 1–22.Google Scholar
  16. Grillner, S. (1982) Possible analogies in the control of innate motor acts and the production of sound in speech. In Speech Motor Control, S.Grillner et al. (Eds.) Wenner-Gren Center Int. Symp. 36: 217–229.Google Scholar
  17. Grillner, S., Williams, T.L. & Lagerbäck, P.-Å. (1984) The edge cell, a possible intraspinal mechanoreceptor. Science 223: 500–503.CrossRefGoogle Scholar
  18. Grillner, S., Stein, P.S.G., Stuart, D.G., Forssberg, H. & Herman, R.H. (Eds.) Neurobiology of Vertebrate Locomotion. London: MacMillan, 1986.Google Scholar
  19. Grillner, S., Buchanan, J.T. & Lansner, A. (1988) Simulation of the segmental burst generating network for locomotion in lamprey. Neurosci. Lett. 89: 31–35.CrossRefGoogle Scholar
  20. Grillner, S., Wallén, P. & Viana Di Prisco, G. (1990) The cellular network underlying locomotion as revealed in a lower vertebrate model: transmitters, membrane properties, circuitry and simulation. Cold Sp. Harb. Symp. (The Brain) 55: 779–789.Google Scholar
  21. Grillner, S., Wallén, P., Brodin, L. & Lansner, A. (1991) Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties and simulation. Ann. Rev. Neurosci. 14: 169–199.CrossRefGoogle Scholar
  22. Grillner, S. & Matsushima, T. (1991) The neural network underlying locomotion in lamprey - Synaptic and cellular mechanisms. Neuron 7: 1–15.CrossRefGoogle Scholar
  23. Kleinfeld, D. & Sompolinsky, H. (1988) Associative neural network model for the generation of temporal patterns. Biophys. J. 54: 1039–1051.CrossRefGoogle Scholar
  24. Konism, M. (1985) Birdsong: From behavior to neuron. Ann. Rev. Neurosci. 8: 125–170.CrossRefGoogle Scholar
  25. Lansner, A., Ekeberg, Ö., Tråven, H., Brodin, L., Wallén, P., Stensmo, M. & Grillner, S. (1989) Simulation of the experimentally established segmental, supraspinal and sensory circuitry underlying locomotion in lamprey. Soc. NeuroscL Abstr. 15: l449.Google Scholar
  26. Matsushima, T. & Grillner, S. (1990) Intersegmental co-ordination of undulatory movements- a “trailing oscillator” hypothesis. NeuroReport 1: 97–100.Google Scholar
  27. Matsushima, T. & Grillner, S. (1992) Neural mechanisms of intersegmental coordination in lamprey: Local excitability changes modify the phase coupling along the spinal cord. J. Neurophysiol. 67: 373–388.Google Scholar
  28. McClellan, A. & Sigvardt, K. (1988) Features of entrainment of spinal pattern generators for locomotor activity in the lamprey spinal cord. J. Neurosci. 8: 133–145.Google Scholar
  29. Viana Di Prisco, G., Walten, P. & Grillner, S. (1990) Synaptic effects of intraspinal stretch receptor neurons mediating movement related feedback during locomotion. Brain Res. 530: 161–166.CrossRefGoogle Scholar
  30. Wadden, T., Grillner, S., Matsushima, T. & Lansner, A. (1992) Trailing oscillator hypothesis of undulatory locomotion-Realistic simulation of verified experimental network (submitted).Google Scholar
  31. Wallén, P. & Lansner, A. (1984) Do the motoneurons constitute a part of the spinal network generating the swimming rhythm in the lamprey? J. Exp. Biol. 113: 493–497.Google Scholar
  32. Wallén, P. & Williams, T.L. (1984) Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal lamprey. J. Physiol. 347: 225–239.Google Scholar
  33. Williams, T.L., Sigvardt, K., Kopell, N., Ermentrout, G.B. & Remler, M.P. (1990) Forcing of coupled nonlinear oscillators: studies of intersegmental coordination in the lamprey locomotor central pattern generator. J. Neurophysiol. 64: 862–871.Google Scholar
  34. Williams, T.L. (1992) Phase coupling in simulated chains of coupled oscillators representing the lamprey spinal cord. Neural Comput. (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Gonzalo Viana Di Prisco
    • 2
  • Peter Wallén
    • 1
  • Sten Grillner
    • 1
  1. 1.Nobel Institute for NeurophysiologyKarolinska InstitutetStockholmSweden
  2. 2.“J.M. Vargas” School of MedicineCentral University of VenezuelaCaracasVenezuela

Personalised recommendations