Neural and psychophysical models of chromatic and achromatic visual processes

  • Eugenio Martinez-Uriegas
Conference paper
Part of the Research Notes in Neural Computing book series (NEURALCOMPUTING, volume 4)

Abstract

Color is identified with the physical properties of matter because it is a visual percept that depends to a high degree upon the spectral absorption characteristics of the surface being viewed, provided that the conditions of illumination are not very unusual. More precisely, color is one of the many elemental representations of the environment constructed by those brain processes which we call the visual system. Thus, it is of great interest to elucidate the processing of chromatic information and the neural machinery involved in this task.

Keywords

Hexagonal Retina Kelly Demultiplexing Valois 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burbeck, C.A., and Kelly, D.H. (1980) Spatio-temporal characteristics of visual mechanisms: excitatory-inhibitory model. J. Opt. Soc. Am., 70, 1121–1126.CrossRefGoogle Scholar
  2. Burbeck, C. A., and Kelly, D. H. (1981) Contrast gain measurements and the transient/sustained dichotomy J. Opt. Soc. Am., 71, 1335–1342.Google Scholar
  3. De Valois, R.L., Abramov E. and Jacobs, G.H. (1966) Analysis of response patterns of LGN cells. J. Opt. Soc. Am. 56, 966–977.CrossRefGoogle Scholar
  4. De Valois, R. L., and De Valois, K. K. (1975) Neural coding of color. In Carterette & Friedman (eds.) Handbook of Perception, V. 5, Academic Press, New York.Google Scholar
  5. De Valois, R. L., and De Valois, K. K., 1988: Spatial Vision. Ch. 6, Oxford Science Publications, New York.Google Scholar
  6. Derrington, A. M., Krauskopf, J. and Lennie, P. (1984) Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. (London). 357, 219–251.Google Scholar
  7. D’Zmura, M. and Lennie, P. (1986) Mechanisms of color constancy. J. Opt. Soc. Am., A3, 1662–1672.CrossRefGoogle Scholar
  8. Finkelstein, M. A., and Hood, D. C. (1984) Detection and discrimination of small brief lights: variable tuning of opponent channels. Vision Res., 24, 175–181.CrossRefGoogle Scholar
  9. Gouras, P., and Zrenner, E. (1979) Enhancement of luminance flicker by color-opponent mechanisms. Science, 205. 587–589.CrossRefGoogle Scholar
  10. Gouras, P., and Zrenner, E. (1981) Color coding in primate retina. Vision Res., 21, 1591–1598.CrossRefGoogle Scholar
  11. Guth, S. L. (1991) Model for color vision and light adaptation. J. Opt. Soc. Am., A8, 976–993.CrossRefGoogle Scholar
  12. Guth, S. L., Massof, R.W., and Benzschawel, T. (1980) Vector model for normal and dichromatic color vision. J. Opt. Soc. Am., 70, 197–212.CrossRefGoogle Scholar
  13. Hubel, D. and Livingstone, M. (1990) Color Puzzles. Cold Spring Harbor Symposia on Quantitative Biology, Vol. LV, 643–649.Google Scholar
  14. Hurvich, L. M., and Jameson, D. (1955) Some quantitative aspects of an opponent-colors theory, n. Brightness, saturation and hue in normal and dichromatic vision. J. Opt. Soc. Am., 45, 602–616.CrossRefGoogle Scholar
  15. Ingling Jr., C. R. and Drum, B. A. (1973) Retinal receptive fields: correlations between psychophysics and electrophysiology. Vision Res. 13, 1151–1163.CrossRefGoogle Scholar
  16. Ingling Jr., C. R., and Tsou, B.H. (1977) Orthogonal combination of the three visual channels. Vision Res., 17, 1075–1082.CrossRefGoogle Scholar
  17. Ingling Jr., C. R., and Martinez-Uriegas, E. (1983a) The spatiochromatic signal of the r-g channel. In Mollon & Sharpe (Eds.) Colour Vision, Academic Press, London, 433–444.Google Scholar
  18. Ingling Jr., C. R., and Martinez-Uriegas, E. (1983b) The relationship between spectral sensitivity and spatial sensitivity for the r-g X-channel. Vision. Res., 23, 1495–1500.CrossRefGoogle Scholar
  19. Ingling Jr., C. R., and Martinez-Uriegas, E. (1985) The spatiotemporal properties of the r-g X-cell channel. Vision Res., 25, 33–38.CrossRefGoogle Scholar
  20. Kaplan, E., and Shapley, R. (1982) X and Y cells in the lateral geniculate nucleus of macaque monkeys. J. Physiol., 330, 125–143.Google Scholar
  21. Kaplan, E., Lee, B. B. and Shapley, R. (1990) New views of primate retinal function. In “Progress in Retinal Research”, eds. N. Osborne, G. Chader, Vol. 9, Oxford: Pergamon.Google Scholar
  22. Kelly, D. H. (1979) Motion and vision. II. Stabilized spatiotemporal threshold surface. J. Opt. Soc. Am., 169, 1340–1349.CrossRefGoogle Scholar
  23. Kelly, D.H. (1983) Spatiotemporal variation of chromatic and achromatic contrast thresholds. J. Opt. Soc. Am., 73, 742–750.CrossRefGoogle Scholar
  24. King-Smith, P. E., and Carden, D. (1976) Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. J. Opt. Soc. Am. 66, 709–717.CrossRefGoogle Scholar
  25. Kulikowski, J.J., and Tolhurst, D.J. (1973) Psychophysical evidence for sustained and transient detectors in human vision. J. Physiol (London). 237, 149–162.Google Scholar
  26. Lennie, P., Haake, P.W., and Williams, D.R. (1989) Chromatic opponency through random connections to cones. Inv. Ophth. Vis. Sc.(Suppl.), 30, 3, 322.Google Scholar
  27. Lennie, P. and D’Zmura, M. (1988) Mechanisms of color vision. CRC Crit. Rev. Neurobiol. 3, 333–400.Google Scholar
  28. Lennie, P., Krauskopf, J. and Sclar, G. (1990) Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10, 649–669.Google Scholar
  29. Lindsay, D. T., Pokorny, J., and Smith, V. C. (1986) Phase dependent sensitivity to heterochromatic flicker. J. Opt. Soc. Am. A 3, 921–927.CrossRefGoogle Scholar
  30. Livingstone, M.S., and Hubel, D.H. (1984) Anatomy and physiology of a color system in the primate visual cortex. J. of Neurosci., 4, 309–356.Google Scholar
  31. Livingstone, M. S., and Hubel, D. H. (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurophysiol., 7, 3416–3468.Google Scholar
  32. Livingstone, M.S., and Hubel, D.H. (1988) Segregation of form, color, movement and depth: anatomy, physiology and perception. Science, 240, 740–749.CrossRefGoogle Scholar
  33. Martinez-Uriegas, E. (1982) Spatial, temporal and spectral model of the X-channel in human vision. Ph.D. Dissertation, Ohio State University, University Microfilms, Ann Arbor, Michigan.Google Scholar
  34. Martinez-Uriegas, E. (1985) A solution to the color-luminance ambiguity in the spatiotemporal signal of primate X-cells. Inv. Ophth. Vis. Sc.(SuppL), 26, 3, 183.Google Scholar
  35. Martinez-Uriegas, E. (1988) Algebraic analysis of parvocellular color-opponent On-Off interactions. O.S.A. Technical Digest Series, Vol. 11, 64.Google Scholar
  36. Martinez-Uriegas, E., and Kelly, D. H. (1989) Chromatic and achromatic parvo channels. Inv. Ophth. Vis. Sc.(SuppL), 30, 3, 128.Google Scholar
  37. Martinez-Uriegas, E. (1990) Spatiotemporal multiplexing of chromatic and achromatic information in human vision SPIE Proceedings Series, Vol. 1249, 178–199.Google Scholar
  38. Martinez-Uriegas, E. (1991) Simulation of parvocellular demultiplexing. SPIE Proceedings Series, 1453, 300–313.CrossRefGoogle Scholar
  39. Massof, R. W. and Bird, J. E (1978) A general zone theory of color and brightness vision. I. Basic formulation. J. Opt. Soc. Am. 68, 1465–1471.CrossRefGoogle Scholar
  40. Mullen, K.T. (1985) The contrast sensitivity of human colour vision to red-green and blue-yellow gratings. J. Physiol. 359, 381–400.Google Scholar
  41. Mullen, K.T. (1987) Spatial influences on colour opponent contributions to pattern detection. Vision Res. 27, 829–839.CrossRefGoogle Scholar
  42. Rohaly, A.M., and Buchsbaum, G. (1988) Global spatiochromatic mechanism accounting for luminance variations in contrast sensitivity functions. J. Opt. Soc. Am. A5, 572–576. es. 9 4, 75–85.Google Scholar
  43. Schein, S. J. and Desimone, R. (1990) Spectral properties of V4 neurons in the macaque. J. Neurosci. 10 (10) 3369–3389.Google Scholar
  44. Schiller, P.H., Sandell, J.H., and Maunsell, J.H.R. (1986) Functions of the ON and OFF channels of the visual system. Nature, 322, 824–825.CrossRefGoogle Scholar
  45. Schiller, P. H., Logothetis, N K., and Charles, E. R. (1990) Role of the color-opponent and broad-band channels in vision. Visual Neurosci. 5: 321–346.CrossRefGoogle Scholar
  46. Shapley, R., and Kaplan, E. (1989) Responses of magnocellular LGN neurons and M retinal ganglion cells to drifting heterochromatic gratings. Inv. Ophth. Vis. Sc.(Suppl.), 30, 3, 322.Google Scholar
  47. Shapley, R. (1990) Visual sensitivity and parallel retinocortical channels. Annu. Rev. Psych., 41, 635–658.CrossRefGoogle Scholar
  48. Shipp, S., and Zeki, S.M. (1985) Segregation of pathways leading from area V2 to areas V4 and V5 of macaque visual cortex. Nature (London). 314, 322.CrossRefGoogle Scholar
  49. Smith, V.C., and Pokorny, J. (1979) Table of cone spectral sensitivities. In: Human Color Vision, by R.M. Boynton. Holt Rinehart, New York.Google Scholar
  50. Smith, V.C., Lee, B.B., Pokorny, J., and Martin, P.R. (1989) Response of macaque ganglion cells to changes in the phase of two flickering lights. Inv. Ophth. Vis. Sc.(Suppl.), 30, 3, 323.Google Scholar
  51. Swanson, W. H., Pokorny, J. and Smith, V. C. (1988) Effects of chromatic adaptation on phase-dependent sensitivity to heterochromatic flicker. J. Opt. Soc. Am. A 5, 1976–1982.CrossRefGoogle Scholar
  52. Thorell, L. G., De Valois, R. L. and Albretch, D. G. (1984) Spatial mapping of monkey VI cells with pure color and luminance stimuli. Vision Res. 24, 751–769.CrossRefGoogle Scholar
  53. Tootell, R. B. H. and Hamilton, S. L. (1989) Functional anatomy of the second visual area (V2) in the macaque. J. Neurosci. 9 (8), 2620–2644.Google Scholar
  54. Walraven, P. L. (1962) “On the Mechanisms of Colour Vision,” Thesis, Institute for Perception RVO-TN. Soesterberg, Netherlands.Google Scholar
  55. Williams, D. R. (1988) Topography of the foveal cone mosaic in the living human eye. Vision Res. 28, 433 - 454.CrossRefGoogle Scholar
  56. Wiesel, T.N. and Hubel, D.H. (1966) Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 29, 1115–1156.Google Scholar
  57. Wilson, H. R., Levi, D., Maffei, L., Rovamo, J., and De Valois, R. (1990). The perception of form: Retina to striate cortex. In Spillman, L. and Werner, J. S. (Eds.), Visual perception: The neurophysiologies foundations. Academic Press.Google Scholar
  58. Wyszecki, G., and Stiles, W.S. (1982) Color Science, Ch. 3 & 4. J. Wiley & Sons.Google Scholar
  59. Zeki, S. M. (1983a) The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex. Proc. R. Soc. Lond. [Biol.] 217, 449–470.CrossRefGoogle Scholar
  60. Zeki, S. M. (1983b) Colour coding in the cerebral cortex: the reaction of cells in monkey cortex to wavelengths and colours. Neuroscience, 9, 741–765.CrossRefGoogle Scholar
  61. Zeki, S. M. (1983c) Colour coding in the cerebral cortex: the responses of wavelength- selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience, 9, 767–781.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Eugenio Martinez-Uriegas
    • 1
  1. 1.Sensory Science and Technology Center Visual Sciences ProgramSRI InternationalMenlo ParkUSA

Personalised recommendations