An Introduction to Human Haptic Exploration and Recognition of Objects for Neuroscience and AI

  • Susan J. Lederman
  • Roberta L. Klatzky
Conference paper
Part of the Research Notes in Neural Computing book series (NEURALCOMPUTING, volume 4)

Abstract

This paper addresses current conceptual/theoretical issues and empirical research on the human haptic system. Haptics uses cutaneous and kinesthetic inputs, typically during purposive exploration, to derive information about objects and surfaces, their properties, and their spatial layout. The nature of stereotypical classes of manual exploration (“exploratory procedures”) are examined, and further considered in terms of their constraints on property extraction. These initial empirical results have been used to develop a conceptual model of human haptic object processing (Klatzky & Lederman, 1991 and submitted). The selection of a sequence of manual exploration has been implemented using a network approach in which competing constraints must be optimally satisfied. A number of our previously obtained empirical results that deal with the haptic processing of multidimensional objects support the model. Applications for the design of tactile and haptic robotic and telerobotic perceptual systems for use in unstructured environments are considered.

Keywords

Sorting Schiff 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bushnell, E. W. and Boudreau, P. R. (1991). The development of haptic perception during infancy. In M. A. Heller & W. Schiff. (Eds.). The Psychology of Touch (pp. 139–161 ). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  2. Garner,W. (1974). The processing of information and structure. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  3. Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.Google Scholar
  4. Heller, M. (1991). Haptic perception in blind people. In M.A. Heller & W. Schiff (Eds.). The psychology of touch, Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  5. Katz, D. (1989). The world of touch (L.E. Kruger, Trans.).Google Scholar
  6. Hillsdale, N. J.: Lawrence Erlbaum Assoc. (original work published 1925 ).Google Scholar
  7. Kennedy, J. M., Gabias, P. and Nicholls, A. (1991). Tactile pictures. In M. A. Heller & W. Schiff. (Eds.), The psychology of touch (pp. 263–299 ). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  8. Klatzky, R. L. & Lederman, S. J. (submitted). Toward a computational model of constraint-driven exploration and haptic object identification.Google Scholar
  9. Klatzky, R. L. & Lederman, S. J. (1991). Toward a computational model of constraint-driven exploration and haptic object identification. Technical Report #RPL-TR-9104, Queen’s University.Google Scholar
  10. Klatzky, R. L., Lederman, S. J. & Metzger, V. (1985). Identifying objects by touch: An “expert system”. Perception & Psychophvsics. 37, 299–302.Google Scholar
  11. Klatzky, R. L., Lederman, S. J. & Reed, C. (1987). There’s more to touch than meets the eye: relative salience of object dimensions for touch with and without vision. Journal of Experimental Psychology: General. 116. 356–369.Google Scholar
  12. Klatzky, R. L., Lederman, S. J. & Reed, C. L. (1989). Haptic integration of object properties: texture, hardness, and planar contour. Journal of Experimental Psychology: Human Perception and Performance. 15. 45–57.CrossRefGoogle Scholar
  13. Lederman, S. J. (1991). Skin and touch. In R. Delbucco. (Ed.), Encyclopedia of human biology. Vol. 7 (pp. 51–63 ). San Diego: Academic Press.Google Scholar
  14. Lederman, S. J., & Klatzky, R. L. (1987). Hand movements: A window into haptic object recognition. Cognitive Psychology, 19 (3). 342–368.CrossRefGoogle Scholar
  15. Lederman, S. J., & Klatzky, R. L. (1990). Haptic classification of common objects: Knowledge-driven exploration. Cognitive Psychology. 22, 421–459.CrossRefGoogle Scholar
  16. Lederman, S. J., Klatzky, R. L., & Reed, C. (in press).Integration of properties in haptically explored three-dimensional objects. Perception.Google Scholar
  17. Lederman, S. J., Klatzky, R. L., & Pawluk, D. (1992). Lessons from biological touch for robotic tactile sensing. In H. Nicholls (Ed.), Advanced tactile sensing for robots. London: World Press.Google Scholar
  18. Lederman, S. J., & Pawluk, D. (1992). Lessons from biological touch for robotic haptic sensing. In H. Nicholls (Ed.), Advanced tactile sensing for robots. London: World Press.Google Scholar
  19. McClelland, J. L. & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review. M/ 375–407.Google Scholar
  20. Minsky, M., Ouh-young, M., Steele, O., Brooks Jr., F.P., & Behensky, M. (1990). Feeling and seeing: Issues in force display. ACM Computer Graphics. 24 (2). 235–243.CrossRefGoogle Scholar
  21. Ouh-Young, M., Pique, M., Hughes, J., Srinivasin, N., & Brooks Jr., F.P. (1988). Using a manipulator for force display in molecular docking. IEEE Robotics and Automation Conference Proceedings. 3, 1824–1829.Google Scholar
  22. Reed, C. L., Lederman, S.J. & Klatzky, R.L. (1990). Haptic integration of planar size with hardness, texture and plan contour. Canadian Journal of Psychology. 44 (4). 522–545.CrossRefGoogle Scholar
  23. Rosch, E. (1978). Principles of categorization. In E. Rosch & B. Lloyd. (Eds.), Cognition and categorization(pp. 27 - 48 ). New York: Lawrence Erlbaum Associates.Google Scholar
  24. Ruff, H. A. (1989). The infant’s use of visual and haptic information in the perception and recognition of objects. Canadian Journal of Psychology. 43 (2). 302–319.CrossRefGoogle Scholar
  25. Rumelhart, D. E., Smolensky, P., McClelland, J.L. & Hinton, G.E. (1989). Schemata and sequential thought processes in PDP models. In J.L. McClelland & D.E. Rumelhart. (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 2 (pp. 7–57 ). Cambridge, MA: MIT Press.Google Scholar
  26. Schneider, W. & Detweiler,M. (1987). A connectionist/control architecture for working memory. In G.H. Bower (Ed.). The psychology of learning and motivation. Vol. 21. (pp 54–119 ), San Diego: Academic Press.Google Scholar
  27. Seidenberg, M. S. & McClelland, J.L. (1989). A distributed, developmental model of word recognition and naming. Psychological Review. 96. 523–568.CrossRefGoogle Scholar
  28. Solomon, H. Y., Turvey, M.T. & Burton, G. (1989a). Perceiving extents of rods by wielding: Haptic diagonalization and decomposition of the inertia tensor. Journal of Experimental Psychology: Human Perception and Performance. 15 (1). 58–68.CrossRefGoogle Scholar
  29. Summers, C. (1991). Haptic exploration with and without vision: Property encoding and object representation. Unpublished PhD dissertation, Queen’s University.Google Scholar
  30. Summers, C., Lederman, S.J., & Klatzky, R.L. (submitted) Salience of three-dimensional exploration with and without. object properties under haptic vision.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Susan J. Lederman
    • 1
    • 2
  • Roberta L. Klatzky
    • 3
  1. 1.Dept of PsychologyQueen’s UniversityKingstonCanada
  2. 2.Dept of Computing & Information ScienceQueen’s UniversityKingstonCanada
  3. 3.Dept of PsychologyUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations