Analysis of Human Immunodeficiency Virus 1 Envelope Proteins: Contribution of Cysteine Residues to Envelope Function

  • E. Tschachler
  • M. S. ReitzJr.
Conference paper


Human immunodeficiency virus type 1 (HIV-1) is the etiologic agent which causes the acquired immunodeficiency syndrome. Various HIV-1 isolates show a high level of genetic diversity. The envelope gene is the most variable (Alizon et al. 1986; Gurgo et al. 1988; Hahn et al. 1985; Srinivasan et al. 1987; Starcich et al. 1986; Willey et al. 1986); the amino acid sequence of the envelope proteins of different strains differ from each other by as much as 30% of their residues. In spite of this variation there are 21 cysteine residues in the HIV-1 envelope which are perfectly conserved in all reported isolates (Gurgo et al. 1988). Even more surprising is the conservation of the same cysteine residues within the envelope proteins of simian immunodeficiency virus (Franchini et al. 1987; Hirsch et al. 1987; Chakrabarti et al. 1987) and HIV-2 (Guyader et al. 1987), which have only 30%–40% amino acid identity with the envelope of HIV-1. This conservation of cysteine residues suggests that they are highly important to HIV-1 envelope function, most likely through the contribution of disulfide bridges to the tertiary structure of the envelope proteins.


Human Immunodeficiency Virus Cysteine Residue Simian Immunodeficiency Virus Envelope Protein Syncytium Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alizon M, Wain-Hobson S, Montagnier L, Sonigo P (1986) Genetic variability of the AIDS virus: nucleotide sequence analysis of two isolates from African patients. Cell 46: 63–74PubMedCrossRefGoogle Scholar
  2. Allan JS, Coligan JE, Barin F, McLane MF, Sodroski JG, Rosen CA, Haseltine WA, Lee TH, Essex M (1985) Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 228: 1091–1094PubMedCrossRefGoogle Scholar
  3. Chakrabarti L, Guyader M, Alizon M, Daniel MD, Desrosiers RC, Tiollais P, Sonigo P (1987) Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature 328: 543–547PubMedCrossRefGoogle Scholar
  4. Dalgleish AG, Beverly PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312: 763–767PubMedCrossRefGoogle Scholar
  5. diMarzo Veronese FD, DeVico AL, Copeland TD, Oroszlan S, Gallo RC, Sarngadharan MG (1985) Characterization of gp41 as the transmembrane protein coded by the HTLV-III/LAV envelope gene. Science 229: 1402–1405CrossRefGoogle Scholar
  6. Fisher AG, Feinberg MB, Josephs SF, Harper ME, Marselle LM, Reyes G, Gonda MS, Aldovini A, Debouk C, Gallo RC et al. (1986) The trans-activator gene of HTLV-III is essential for virus replication. Nature 320: 367–371PubMedCrossRefGoogle Scholar
  7. Franchini G, Gurgo C, Guo HG, Gallo RC, Collalti E, Fargnoli KA, Hall LF, Wong-Staal F, Reitz MS Jr (1987) Sequence of simian immunodeficiency virus and its relationship to the human imunodeficiency viruses. Nature 328: 539–543PubMedCrossRefGoogle Scholar
  8. Guo H-G, diMarzo Veronese F, Tschachler E, Pal R, Kalynaraman VS, Gallo RC, Reitz MS Jr (1990) Characterization of a point mutation blocked in envelope glycoprotein cleavage. Virology 174: 217–224PubMedCrossRefGoogle Scholar
  9. Gurgo C, Guo H-G, Franchini G, Aldovini A, Collalti E, Farrell K, Wong-Staal F, Gallo RC, Reitz MS Jr (1988) Envelope sequences of two new United States HIV-1 isolates. Virology 164: 531–536PubMedCrossRefGoogle Scholar
  10. Guyader M, Emerman M, Sonigo P, Clavel F, Montagnier L, Alizon M (1987) Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 326: 662–669PubMedCrossRefGoogle Scholar
  11. Hahn BH, Gonda MA, Shaw GM, Popovic M, Hoxie JA, Gallo RC, Wong-Staal F (1985) Genomic diversity of the acquired immune deficiency szndrome virus HTLV-III: different viruses exhibit greatest divergence in their envelope genes. Proc Natl Acad Sci USA 82: 4813–4817PubMedCrossRefGoogle Scholar
  12. Hirsch V, Riedel N, Mullins JI (1987) The genome organization of STLV-3 is similar to that of the AIDS virus except for a truncated transmembrane protein. Cell 49: 307–319PubMedCrossRefGoogle Scholar
  13. Klatzman D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC, Montagnier L (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312: 767–768CrossRefGoogle Scholar
  14. Lasky LA, Nakamura G, Smith DH, Fennie C, Shimasaki C, Patzer E, Berman P, Gregory T, Capon DJ (1987) Delineation of a region of the human immunodeficiency virus type 1 gpl20 glycoprotein critical for interaction with the CD4 receptor. Cell 50: 975–985PubMedCrossRefGoogle Scholar
  15. Lifson JD, Feinberg MB, Reyes GR, Rabin L, Banapour B, Chakrabarti S, Moss B, Wong-Staal F, Steimer KS, Engleman EG (1986) Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature 323: 725–728PubMedCrossRefGoogle Scholar
  16. Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47: 333–348PubMedCrossRefGoogle Scholar
  17. McCune JM, Rabin LB, Feinberg MB, Lieberman M, Kosek JC, Reyes GR, Weissman IL (1988) Endoproteolytic cleavage of gpl60 is required for the activation of human immunodeficiency virus. Cell 53: 55–67PubMedCrossRefGoogle Scholar
  18. McDougal JS, Kennedy MS, Sligh JM, Cort SP, Mawle A, Nicholson JK (1986 a) Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. Science 231: 382–385PubMedCrossRefGoogle Scholar
  19. McDougal JS, Nicholson JK, Cross GD, Cort SP, Kennedy MS, Mawle AC (1986 b) Binding of the human retrovirus HTLV-III/LAV/ARV/HIV to the CD4 (T4) molecule: conformation dependence, epitope mapping, antibody inhibition, and potential for idiotypic mimicry. J Immunol 137: 2937–2944PubMedGoogle Scholar
  20. Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, Doran ER, Rafalski JA, Whitehorn EA, Baumeister K et al. (1985) Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313: 277–284PubMedCrossRefGoogle Scholar
  21. Smith DH, Byrn RA, Marsters SA, Gregory T, Groopman JE, Capon DJ (1987) Blocking of FHV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science 238: 1704–1707PubMedCrossRefGoogle Scholar
  22. Srinivasan A, Anand R, York D, Ranganathan P, Feorino P, Schochetman G, Curran J, Kalyanaraman VS, Luciw PA, Sanchez-Pescador R (1987) Molecular characterization of human immunodeficiency virus from Zaire: nucleotide sequence analysis identifies conserved and variable domains in the envelope gene. Gene 52: 71–82PubMedCrossRefGoogle Scholar
  23. Starcich BR, Hahn BH, Shaw GM, McNeely PD, Modrow S, Wolf H, Parks ES, Parks WP, Josephs SF, Gallo RC, Wong-Staal F (1986) Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell 45: 637–648PubMedCrossRefGoogle Scholar
  24. Stein BS, Gwoda SD, Lifson JD, Penhallow RC, Bensch KG, Engleman EG (1987) pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 49: 659–668PubMedCrossRefGoogle Scholar
  25. Tschachler E, Buchow H, Gallo RC, Reitz MS Jr (1990) Functionol contribution of cysteine residues to the human immunodeficiency virus type 1 envelope. J Virol 64: 2250–2259PubMedGoogle Scholar
  26. Willey RL, Rutledge RA, Dias S, Folks T, Theodore T, Buckler CE, Martin MA (1986 Jul) Identification of conserved and divergent domains within the envelope gene of the acquired immunodeficiency syndrome retrovirus. Proc Natl Acad Sci USA 83(14): 5038–42PubMedCrossRefGoogle Scholar
  27. Zoller MJ, Smith M (1984) Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA 3: 479–488PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • E. Tschachler
  • M. S. ReitzJr.

There are no affiliations available

Personalised recommendations