Electron Stimulated Desorption (ESD) of Ammonia on TiO2(110): The Influence of Substrate Defect Structure

  • U. Diebold
  • T. E. Madey
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 31)


Electron stimulated processes for NH3 adsorbed on rutile TiO2(110) have been studied by means of XPS and mass — resolved ESDIAD (electron stimulated desorption angular ion distribution). We have used three differently prepared TiO2 surfaces to study the influence of the substrate defect structure on the interaction with NH3: a stoichiometric nearly perfect surface, a high — temperature annealed slightly oxygen deficient surface and a sputtered highly oxygen deficient surface. In the limit of a stoichiometric surface, electron irradiation induces the desorption of NH3 molecules. When the highly oxygen deficient TiO2 surface is used as substrate, both desorption and electron stimulated dissociation of NH3 take place with atomic nitrogen the final product of the dissociation process. These measurements provide direct evidence for the role of surface defects of an oxide substrate in electron stimulated reaction pathways.


Electron Irradiation Ti02 Substrate Electron Bombardment Saturation Coverage Electron Stimulate Desorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.J. Feibeiman and M.L. Knotek, Phys.Rev. B 18, 6531 (1978).CrossRefADSGoogle Scholar
  2. [2]
    B.L. Maschhoff, J.-M. Pan and T.E. Madey, Surf.Sci 259, 190 (1991).CrossRefADSGoogle Scholar
  3. [3]
    U. Diebold and T.E. Madey, J.Vac.Sci.Techn. (in press).Google Scholar
  4. [4]
    D.C. Cronemeyer, Phys.Rev. 87, 876 (1952).CrossRefADSGoogle Scholar
  5. [5]
    J.-M. Pan, U. Diebold, B.L. Maschhoff and T.E. Madey, J. Vac. Sci. Techn. (in press).Google Scholar
  6. [6]
    S.A. Joyce, A.L. Johnson and T.E. Madey, J.Vac.Sci.Techn. A7, 2221 (1989).ADSGoogle Scholar
  7. [7]
    E. Román and J.L. de Segovia, Surf.Sci. 251/252, 742 (1991).CrossRefGoogle Scholar
  8. [8]
    H. Höchst, R.D. Bringans, P.Steiner and T. Wolf, Phys.Rev.B 25, 7183 (1982).CrossRefADSGoogle Scholar
  9. [9]
    S. Munnix and M. Schmeits, Phys.Rev. B. 31, 3369 (1985).ADSGoogle Scholar
  10. [10]
    T.R. Hayes and J.F. Evans, Surf.Sci. 159, 466 (1985).CrossRefADSGoogle Scholar
  11. [11]
    C. Klauber, M.D. Alvey and J.T. Yates Jr., Surf.Sci. 154, 139 (1985).CrossRefADSGoogle Scholar
  12. [12]
    T.E. Madey, M. Polak, AX. Johnson and M.M. Walczak, in Desorption Induced by Electronic Transitions, edited by R. H. Stulen and M. L. Knotek, Springer, Berlin (1988).Google Scholar
  13. [13]
    F.P. Netzer and T.E. Madey, Phys.Rev.Lett. 47, 928 (1981).CrossRefADSGoogle Scholar
  14. [14]
    C. Benndorf and T.E. Madey, Surf.Sci. 135, 164 (1983).CrossRefADSGoogle Scholar
  15. [15]
    R.L. Kurtz, Surf.Sci. 177, 526 (1986).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • U. Diebold
    • 1
  • T. E. Madey
    • 1
  1. 1.Department of Physics and Laboratory for Surface Modification, RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations