Atomic Scale Desorption and Fragmentation with the STM

  • Ph. Avouris
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 31)

Abstract

The STM is not only a powerful probe of the atomic structure of surfaces, but is also a unique tool for the atomic scale modification and manipulation of materials. I will illustrate this new application of the STM with three examples: First, I will discuss a general approach for the selective breaking of strong chemical bonds, which we use to manipulate Si atoms on Si(111) at room temperature. I will then use the manipulation of a Au(111) surface to show that “local” modifications can couple with long-range elastic surface interactions to lead to large scale atomic rearrangements. Finally, I will discuss the use of electrons from the STM tip to induce the dissociation of individual molecular adsorbates.

Keywords

Depression Boron Soliton Verse Marmer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.F. Quate, in Highlights and Prospects in Condensed Matter Physics, Ed. L. Esaki (Plenum, New York, 1992), and references therein.Google Scholar
  2. 2.
    J.A. Stroscio and D.M. Eigler, Science, 254, 1319 (1991), and references therein.CrossRefADSGoogle Scholar
  3. 3.
    I.-W. Lyo and Ph. Avouris, Science 253, 173 (1991).CrossRefADSGoogle Scholar
  4. 4.
    Ph. Avouris, I.-W. Lyo, Appl. Surf. Sci., in press.Google Scholar
  5. 5.
    Ph. Avouris and Y. Hasegawa, to be published.Google Scholar
  6. 6.
    G. Dujardin, R.E. Wallcup and Ph. Avouris, Science, 255, 1232 (1992).CrossRefADSGoogle Scholar
  7. 7.
    N.D. Lang, Phys. Rev. B, in press.Google Scholar
  8. 8.
    C.J. Chen, J. Phys. (Condens. Matter), 3, 1227 (1991).CrossRefADSGoogle Scholar
  9. 9.
    S. Ciraci, E. Tekman, M. Gokcedag and I.P. Batra, Ultramicroscopy, in press.Google Scholar
  10. 10.
    T.T. Tsong, Atom-Probe Field Ion Microscopy (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
  11. 11.
    Ph. Avouris and I.-W. Lyo, Surf. Sci. 242, 1 (1991).CrossRefADSGoogle Scholar
  12. I.-W. Lyo and Ph. Avouris, J. Chem. Phys. 93, 4479 (1990).CrossRefADSGoogle Scholar
  13. 12.
    Ch. Woell, S. Chiang, R.J. Wilson, and P.H. Lippel, Phys. Rev. B, 39, 7988 (1989).CrossRefADSGoogle Scholar
  14. 13.
    J.V. Barth, H. Brune, G. Ertl and R.J. Belim, Phys. Rev. B, 42, 9307 (1990).CrossRefADSGoogle Scholar
  15. 14.
    Y.I. Frenkel and T. Kontorova, Zh. Eksp. Teor. Fiz., 8, 1340 (1938).Google Scholar
  16. 15.
    S. Narasimhan and D. Vandcrbilt, to be published.Google Scholar
  17. 16.
    R.S. Becker, G.S. Higashi, Y.J. Chabal and A.J. Becker, Phys. Rev. Lett., 65, 1917 (1990).CrossRefADSGoogle Scholar
  18. 17.
    Ph. Avouris, J. Phys. Chem., 94, 2247 (1990), Ph. Avouris et al. J. Vac. Sci. Technol. B, 8, 3405 (1990).Google Scholar
  19. 18.
    I.-W. Lyo, E. Kaxiras and Ph. Avouris, Phys. Rev. Lett., 63, 1261 (1989).CrossRefADSGoogle Scholar
  20. 19.
    Y.G. Kim, P.A. Dowben, J.T. Spencer and G.O. Ramseyer, J. Vac. Sci. Technol. A, 7, 2796 (1989).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Ph. Avouris
    • 1
  1. 1.IBM Research DivisionT. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations