Advertisement

Desorption of Ions and Neutrals with >6 eV Laser Light

  • Y. Murata
  • K. Fukutani
  • A. Peremans
  • K. Mase
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 31)

Abstract

Photostimulated desorption of NO and CO chemisorbed on a Pt(001) surface at 80 K has been studied with an ArF excimer laser (hν=6.41 eV) irradiation onto the surface. Desorption of both neutrals and ions was observed. Neutral species were state-selectively detected by the resonanceenhanced multiphoton ionization technique. The yields of NO, NO+, CO and CO+ are proportional to the first, third, third, and ~1.8th powers of laser fluence, respectively. Desorption mechanisms for these species are discussed.

Keywords

Laser Fluence Pump Laser Desorption Mechanism Desorption Yield Desorbed Neutral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Buntin, J.L. Richter, D.S. King, and R.R. Cavanagh, J. Chem. Phys. 91, 6429 (1989).CrossRefADSGoogle Scholar
  2. 2.
    R. Schwartzwald, A. Modl, and T.J. Chuang, Surf. Sci. 242, 437 (1991).CrossRefADSGoogle Scholar
  3. 3.
    K. Mase, S. Mizuno, Y. Achiba, and Y. Murata, Surf. Sci. 242, 444 (1991).CrossRefADSGoogle Scholar
  4. 4.
    J.A. Prybyla, T.F. Heinz, J.A. Misewich, M.M.T. Loy, and J.H. Glownia, Phys. Rev. Lett. 64, 1537 (1990).CrossRefADSGoogle Scholar
  5. 5.
    E. Hasselbrink, S. Jakubith, S. Nettesheim, M. Wolf, A. Cassuto, and G. Ertl, J. Chem. Phys. 92, 3154 (1990).CrossRefADSGoogle Scholar
  6. 6.
    K. Mase, S. Mizuno, M. Yamada, I. Doi, T. Katsumi, S. Watanabe, Y. Achiba, and Y. Murata, J. Chem. Phys. 91, 590 (1989).CrossRefADSGoogle Scholar
  7. 7.
    J.F. Ready, Effect of High-Power Laser Radiation (Academic, New York, 1971).Google Scholar
  8. 8.
    A. Peremans, K. Fukutani, K. Mase, and Y. Murata, Phys. Rev. B, to be published.Google Scholar
  9. 9.
    R.G. Greenler, Surf. Sci. 69, 647 (1977).CrossRefADSGoogle Scholar
  10. 10.
    K. Fukutani, A. Peremans, K. Mase, and Y. Murata, Phys. Rev. B, to be published.Google Scholar
  11. 11.
    P.R. Antoniewicz, Phys. Rev. B 21, 3811 (1980).ADSGoogle Scholar
  12. 12.
    K. Mase, K. Fukutani, and Y. Murata, J. Chem. Phys. 96, 5523 (1992).CrossRefADSGoogle Scholar
  13. 13.
    V. Dose, Surf. Sci. Rep. 5, 337 (1980).CrossRefADSGoogle Scholar
  14. 14.
    A.R. Burns, E.B. Stechel, and D.R. Jennison, Phys. Rev. Lett. 58, 250 (1987).CrossRefADSGoogle Scholar
  15. 15.
    J.W. Gadzuk, L.J. Richter, S.A. Buntin, D.S. King, and R.R. Cavanagh, Surf. Sci. 235, 317 (1990).CrossRefADSGoogle Scholar
  16. 16.
    P. Feulner, R. Treichler, and D. Menzel, Phys. Rev. B 24, 7427 (1981).ADSGoogle Scholar
  17. 17.
    A.R. Burns, E.B. Stechel, and D.R. Jennison, Phys. Rev. Lett. 58, 250 (1987).CrossRefADSGoogle Scholar
  18. 18.
    S. Ferrer, K.H. Frank, and B. Reifl, Surf. Sci. 162, 264 (1985).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Y. Murata
    • 1
  • K. Fukutani
    • 1
  • A. Peremans
    • 1
  • K. Mase
    • 1
  1. 1.Institute for Solid State PhysicsThe University of TokyoMinato-ku, Tokyo 106Japan

Personalised recommendations