EJB Reviews pp 25-34 | Cite as

Protein interaction with ice

  • Choy L. Hew
  • Daniel S. C. Yang
Part of the EJB Reviews book series (EJB REVIEWS, volume 1992)

Abstract

Water is essential to all living cells. It serves as a medium for biological reactions, solute transport and interaction, and regulation of intracellular pH. It is also one of the reactants in many biochemical reactions, and contributes to the stabilization of various macromolecular structures. Any significant deviation on the accessibility of water due to dehydration, dessication and the alteration of its physical state from aqueous phase to ice crystal will pose a severe threat to the normal function and survival of organisms [1]. For many organisms, it is both desirable and important to have the ability to counteract or minimize these threats. The production of specific protein molecules to prevent the loss of water or to inhibit extracellular ice crystal growth are the better known examples.

Keywords

Entropy Crystallization Hexagonal Recrystallization Polypeptide 

Abbrevation

INA

ice nucleation activators

INP

ice nucleation proteins

AFP

antifreeze proteins or polypeptides

AFGP

antifreeze glycoproteins

f

cumulative ice nucleation frequency

z

number of cells

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beall, P. (1983) Cryobiology 20, 324–334.PubMedCrossRefGoogle Scholar
  2. 2.
    DeVries, A. C. (1983) Annu. Rev. Physiol. 45, 245–260.PubMedCrossRefGoogle Scholar
  3. 3.
    Feeney, R. E. & Burcham, T. S. (1986) Annu. Rev. Biophys. 15, 59–78.CrossRefGoogle Scholar
  4. 4.
    Davies, P. L. & Hew, C. L. (1990) FASEB J. 4, 2460–2468.PubMedGoogle Scholar
  5. 5.
    Duman, J. & Horwath, K. (1983) Annu. Rev. Physiol. 45, 261–270.PubMedCrossRefGoogle Scholar
  6. 6.
    Lindow, S. E. (1983) Annu. Rev. Phytopathol. 21, 361–384.CrossRefGoogle Scholar
  7. 7.
    Wolber, P. & Warren, G. (1989) Trends Biochem. Sci. 14, 179–182.PubMedCrossRefGoogle Scholar
  8. 8.
    Ananthanarayanan, V. S. (1989) Life Chemistry Reports 7, 1–32.Google Scholar
  9. 9.
    Fletcher, N. (1970) The chemical physics of ice, pp. 73–103, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  10. 10.
    Franks, F. (1972) in Water, a comprehensive treatise (Franks, F; vol. 1, pp. 115–151, Plenum Press, New York.Google Scholar
  11. 11.
    Duman, J. G. (1990) Cryo ‘90, Abstr. 149, Soc. for Cryobiology/Cryogenic Soc. of America, Binghampton NY.Google Scholar
  12. 12.
    Scholander, P. F. & Maggert, J. E. (1971) Cryobiology 8, 371–374.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang, D. S. C., Sax, M., Chakrabartty, A. & Hew, C. L. (1988) Nature 333, 232–237.PubMedCrossRefGoogle Scholar
  14. 14.
    Patterson, J. L. & Duman, J. G. (1982) J. Exp. Zool. 219, 381–384.CrossRefGoogle Scholar
  15. 15.
    Levitt, J. (1980) Responses of plants to environmental stresses, vol. 1, Academic Press, Orlando FL.Google Scholar
  16. 16.
    Kurkela, S. & Franck, M. (1990) Plant Mol. Biol. 15, 137–144.PubMedCrossRefGoogle Scholar
  17. 17.
    Raymond, J. A. & DeVries, A. L. (1972) Cryobiology 9, 541–547.PubMedCrossRefGoogle Scholar
  18. 18.
    Tomimatsu, Y., Scherer, J. R., Yeh, Y. & Feeney, R. E. (1976) J. Biol. Chem. 251, 2290–2298.PubMedGoogle Scholar
  19. 19.
    Kerr, W. L., Osuga, D. T., Feeney, R. E. & Yeh, Y. (1987) J. Crystal Growth 85, 449–452.CrossRefGoogle Scholar
  20. 20.
    Brown, R. A., Yeh, Y., Nurcham, T. S. & Feeney, R. E. (1985) Biopolymers 24, 1265–1270.PubMedCrossRefGoogle Scholar
  21. 21.
    Raymond, J. A. & DeVries, A. L. (1977) Proc. Natl Acad. Sci. USA 74, 2589–2593.PubMedCrossRefGoogle Scholar
  22. 22.
    Knight, C. A., Cheng, C. C. & DeVries, A. L. (1991) Biophys. J. 59, 409–418.PubMedCrossRefGoogle Scholar
  23. 23.
    Chakrabartty, A., Yang, D. S. C. & Hew, C. L. (1989) J. Biol. Chem. 264, 11313–11316.PubMedGoogle Scholar
  24. 24.
    Cabrera, N. & Vermilyea, D. A. (1958) in Growth and perfection of crystals (Doremus, R. H., Roberts, B. W. & Turnbull, D., eds) pp. 393–408, John Wiley & Sons, New York.Google Scholar
  25. 25.
    Burcham, T. S., Osuga, D. T., Yeh, Y. & Feeney, R. E. (1986) J. Biol. Chem. 261, 6390–6397.PubMedGoogle Scholar
  26. 26.
    DeVrkt, A. L. & Lin, Y. (1977) Biochim. Biophys. Acta 495, 388–392.Google Scholar
  27. 27.
    Gibson, M. K., Sharp, K. A. & Honig, B. H. (1988) J. Comp. Chem. 9, 327–335.CrossRefGoogle Scholar
  28. 28.
    Chakrabartty, A., Ananthanarayanan, V. S. & Hew, C. L. (1989) J. Biol. Chem. 264, 11307–11312.PubMedGoogle Scholar
  29. 29.
    Murphy, D. J. (1983) Annu. Rev. Physiol. 45, 289–299.PubMedCrossRefGoogle Scholar
  30. 30.
    Gross, D. C., Proebstring, E. L. & MacCrindle-Zimmerman, H. (1988) Plant. Physiol. 88, 915–922.PubMedCrossRefGoogle Scholar
  31. 31.
    Kieft, T. L. (1988) Appl. Environ. Microbiol. 54, 1678–1681.PubMedGoogle Scholar
  32. 32.
    Kieft, T. L. & Ruscetti, T. (1990) J. Bacteriol. 172, 3519–3523.PubMedGoogle Scholar
  33. 33.
    Wolaczyk, J. P., Storey, K. B. & Baust, J. G. (1988) Cryobiology 25, 522.CrossRefGoogle Scholar
  34. 34.
    Fall, R. & Scnell, R. C. (1985) J. Marine Res. 43, 257–265.CrossRefGoogle Scholar
  35. 35.
    Amy, D. C., Lindow, S. E. & Upper, C. D. (1976) Nature 262, 282–284.CrossRefGoogle Scholar
  36. 36.
    Warren, G. J., Lindemann, J., Suslow, T. V. & Green, R. L. (1987) in Applications of biotechnology to agricultural chemistry (Le Baron, H., Mumma, R., Honeycutt, R. & Duessing, J., eds) pp. 215–217, American Chemical Society, Washington DC.CrossRefGoogle Scholar
  37. 37.
    Suslow, T. (1989) Trends Biochem. Sci. 14, 180.Google Scholar
  38. 38.
    Vali, G. (1971) J. Atmos. Sci. 28, 402–409.CrossRefGoogle Scholar
  39. 39.
    Govindarajan, A. G. & Lindow, S. E. (1988) Proc. Natl Acad. Sci. USA 85, 1334–1338.PubMedCrossRefGoogle Scholar
  40. 40.
    Yankofsky, S. A., Levin, Z., Bertold, T. & Sandlerman, N. (1981) Appl. Meteorol. 20, 1013–1019.CrossRefGoogle Scholar
  41. 41.
    Turner, M. A., Arellano, F. & Kozloff, L. M. (1990) J. Bacteriol. 172, 2521–2526.PubMedGoogle Scholar
  42. 42.
    Zachariassen, K. E. & Hammel, H. T. (1988) Cryobiology 25, 143–147.CrossRefGoogle Scholar
  43. 43.
    Orser, C., Staskawicz, B. J., Panopoulos, N. J., Dahlbeck, D. & Lindow, S. E. (1985) J. Bacteriol. 164, 359–366.PubMedGoogle Scholar
  44. 44.
    Corotto, L. V., Wolber, P. K. & Warren, G. J. (1986) EMBO J. 5, 231–236.PubMedGoogle Scholar
  45. 45.
    Abe, K., Watabe, S., Emori, Y., Watanabe, M. & Arai, S. (1989) FEBS Lett. 258, 297–300.PubMedCrossRefGoogle Scholar
  46. 46.
    Warren, G. J. & Wolber, P. K. (1987) Cryo Lett. 8, 204–215.Google Scholar
  47. 47.
    Mizuno, H. (1989) Protein Struct. Funct. Genet. 5, 47–65.CrossRefGoogle Scholar
  48. 48.
    Govindarajan, A. G. & Lindow, S. E. (1988) J. Biol. Chem. 263, 9333–9338.PubMedGoogle Scholar
  49. 49.
    Phelps, P., Giddings, T. H., Prochoda, M. & Fall, R. (1986) J. Bacteriol. 167, 496–502.PubMedGoogle Scholar
  50. 50.
    Kozloff, L. M., Lute, M. & Westaway, D. (1984) Science 226, 845–846.PubMedCrossRefGoogle Scholar
  51. 51.
    Burke, M. J. & Lindow, S. E. (1990) Cryobiology 27, 80–84.CrossRefGoogle Scholar
  52. 52.
    Southworth, M. W., Wolber, P. K. & Warren, G. J. (1988) J. Biol. Chem. 263, 15211–15216.PubMedGoogle Scholar
  53. 53.
    Wolber, P. K., Deininger, C. A., Southworth, M. W., Vandekerckhove, J., Van Montagu, M. & Warren, G. J. (1986) Proc. Natl Acad. Sci. USA 83, 7256–7260.PubMedCrossRefGoogle Scholar
  54. 54.
    Caple, G., Sands, D. C., Layton, R. G., Zucker, W. V. & Snider, J. R. (1986) J. Theor. Biol. 119, 37–45.CrossRefGoogle Scholar
  55. 55.
    Neven, L. G., Duman, J. G., Low, M. G., Sehl, L. C. & Castellino, F. J. (1989) J. Comp. Physiol. B 159, 71–82.CrossRefGoogle Scholar
  56. 56.
    Fletcher, G. L., Kao, M. H. & Fourney, R. M. (1986) Can. J. Zool. 64, 1897–1901.CrossRefGoogle Scholar
  57. 57.
    Davies, P. L., Hew, C. L., Shears, M. A. & Fletcher, G. L. (1990) in Transgenic models in medicine and agriculture (Church, R., ed.) pp. 141–161, Alan R. Liss, New York.Google Scholar
  58. 58.
    Georges, F., Saleem, M. & Cutler, A. J. (1990) Gene, 159–165.Google Scholar
  59. 59.
    Kenward, K. D., Davies, P. L., Downing, W. & McPherson, J. (1991) Can. Fed. Biol. Soc., Abstr. 530.Google Scholar
  60. 60.
    Cutler, A. J., Saleem, M., Kendall, E., Gusta, L. V., Georges, F. & Fletcher, G. L. (1989) J. Plant Physiol. 135, 351–354.Google Scholar
  61. 61.
    McKeown, R. L. & Warren, G. J. (1990) Cryo ’90, Abstr. 140, Soc. for Cryobiology/Cryogenic Soc. of America, Binghamton NY.Google Scholar
  62. 62.
    Rubinsky, B., Arav, A., Mattioli, M. & DeVries, A. L. (1990) Biochem. Biophys. Res. Comun. 173, 1369–1374.CrossRefGoogle Scholar
  63. 63.
    Lindemann, J. & Suslow, T. V. (1987) Phytopathology 77, 882–886.CrossRefGoogle Scholar
  64. 64.
    Kojima, T., Soma, T. & Oguri, N. (1988) Theriogenology 30, 1199–1208.PubMedCrossRefGoogle Scholar
  65. 65.
    Watanabe, M. & Arai, S. (1987) Agric. Biol. Chem. 51, 557–563.CrossRefGoogle Scholar
  66. 66.
    Watanabe, M., Watanabe, J., Kumeno, K., Nakahama, N. & Arai, S. (1989) Agric. Biol. Chem. 53, 2731–2735.CrossRefGoogle Scholar
  67. 67.
    Warren, G. J. (1987) Biotechnol. Genet. Eng. Rev. 5, 107–135.Google Scholar
  68. 68.
    Worthy, W. (1990) Chem. Eng. News 8, 23–25.Google Scholar
  69. 69.
    Hsiao, K. C., Cheng, C. H., Fernandes, I. E., Detrich, W. H. & DeVries, A. L. (1990) Proc. Natl Acad. Sci. USA 87, 9265–9269.PubMedCrossRefGoogle Scholar
  70. 70.
    Ewart, K. V. & Fletcher, G. L. (1990) Can. J. Zool. 68, 1652–1658.CrossRefGoogle Scholar

Copyright information

© Federation of European Biochemical Societies 1993

Authors and Affiliations

  • Choy L. Hew
    • 1
  • Daniel S. C. Yang
    • 2
  1. 1.Research Institute, The Hospital for Sick Children Department of Biochemistry and BiochemistryUniversity of TorontoCanada
  2. 2.Department of BiochemistryMcMaster UniversityHamiltonCanada

Personalised recommendations