Skip to main content

Regeneration of Plants from Protoplast of Sweet Potato (Ipomoea batatas L. Lam.)

  • Chapter
Plant Protoplasts and Genetic Engineering IV

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 23))

Abstract

The sweet potato is a food crop of considerable importance in the tropics and even some temperate zones covering the southern regions of Europe (Spain, Italy, and Greece) and the USA. The world production of sweet potato was estimated at 133.2 million t in 1989, and the mean yield of tubers at 14.4 t/ha (FAO 1989). Approximately 8.9 million ha of sweet potato are currently grown worldwide in more than 80 countries, with China (114.0 million t), Indonesia (2.1 million t), Uganda (1.8 million t), India (1.4 million t), Japan (1.3 million t), Rwanda (0.8 million t), Brazil (0.75 million t), and the USA (0.54 million t) being the largest producers (FAO 1989). The root tuber accumulates high amounts of starch. Its nutritive value as a food crop is due to richness in calories and vitamins, as well as a protein content ranging from 2 to 10% dry matter following cultivars (Yang et al. 1975; Hattori et al. 1985). Sweet potato is also grown as a source of industrial starch and for distilleries. Its stem and particularly foliage are used as forage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrendell S, Collins WW (1986) Reaction of sweet potato seedlings to the russet crack strain of feathery mottle virus. Hort Science 21:1191–1193

    Google Scholar 

  • Bajaj YPS (1989) Recent advances in the isolation and culture of protoplasts and their implications in crop improvement. In:Bajaj YPS (ed) Biotechnology in agriculture and forestry vol 8. Plant protoplasts and genetic engineering I. Springer, Berlin, Heidelberg, New York, pp 3–22

    Chapter  Google Scholar 

  • Bidney DL, Shepard JF (1980) Colony development from sweet potato petiole protoplasts and mesophyll cells. Plant Sci Lett 18:335–342

    Article  CAS  Google Scholar 

  • Binding H, Nehls R, Schieder O, Sopory SK, Wenzel G (1978) Regeneration of mesophyll protoplasts isolated from dihaploid clones of Solanum tuberosum. Physiol Plant 43:52–54

    Article  Google Scholar 

  • Binding H, Nehls R, Kock R, Finger J, Mordhorst G (1981) Comparative studies on protoplast regeneration in herbaceous species of Dicotyledoneae class. Z Pflanzenphysiol 101:119–130

    Google Scholar 

  • Bouhassan A (1984) Analyse du polymorphisme des néoformations obtenues in vitro à partir de divers tissus de Patate douce (Ipomoea batatas (L.) Lam., Convolvulacées). Thèse 3ème Cycle, Univ Paris Sud, Orsay, 167 p

    Google Scholar 

  • Butt AD (1985) A general method for the high-yield isolation of mesophyll protoplasts from deciduous tree species. Plant Sci 42:55–59

    Article  CAS  Google Scholar 

  • Chaput MH, Sihachakr D, Ducreux G, Marie D, Barghi N (1990) Somatic hybrid plants produced by electrofusion between dihaploid potatoes: BF15 (HI), Aminca(H6) and Cardinal (H3). Plant Cell Rep 9:411–414

    Article  Google Scholar 

  • Clark CA (1986) Reactions of sweet potato selections to Fusarium root and stem canker caused by Fusarium solani. Plant Dis 70:869–871

    Article  Google Scholar 

  • De Laat AMM, Gôhde W, Vogelzang JDC (1987) Determination of ploidy of single plants and plant populations by flow cytometry. Plant Breed 99:303–307

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization) (1989) Production yearbook. Rome, pp 139

    Google Scholar 

  • Frearson EM, Power JB, Cocking EC (1973) The isolation, culture and regeneration of Petunia leaf protoplasts. Dev Biol 33:130–137

    Google Scholar 

  • Gleddie S, Keller WA, Setterfield G (1986) Somatic embryogenesis and plant regeneration from cell suspension-derived protoplasts of Solanum melongena (eggplant). Can J Bot 64:355–361

    Google Scholar 

  • Harmon S, Hammett HL, Hernandez T, Pope DT (1970) Progress in the breeding and development of new varieties. In: Thirty years of cooperatives sweet potato research 1939–1969. South Coop Ser 159:817

    Google Scholar 

  • Hattori T, Nakagawa T, Maeshima M, Nakamura K, Asahi T (1985) Molecular cloning and nucleotide sequence of cDNA for sporamin, the major soluble protein of sweet potato tuberous roots. Plant Mol Biol 5:313–320

    Google Scholar 

  • Jones A, Cuthbert FP Jr (1973) Associated effects of mass selection for soil-insect resistances in sweet potato. J Am Soc Hortic Sci 98:480–482

    Google Scholar 

  • Jones A, Deonier MT (1965) Interspecific crosses among Ipomoea lacunosa, J. ramoni, I. trichocarpa and J. triloba. Bot Gaz 126:226–232

    Google Scholar 

  • Jones A, Dukes PD (1980) Heritabilities of sweet potato resistance to rootknot caused by Meloidogyne incognita and M. javanica. J Am Soc Hortic Sci 105:154–156

    Google Scholar 

  • Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at very low population density in liquid media. Planta 126:105–110

    Google Scholar 

  • Kobayashi M (1984) The Ipomoea trifida complex closely related to sweet potato. Proc 6th Symp Int Soc Trop Root Crops, CIP, 1983, Lima, Peru, pp 561–568

    Google Scholar 

  • Kokubu T, Sato M (1988) Isolation and culture of petiole protoplasts of sweet potato, Ipomoea batatas (1.) Lam. and its related species. Mem Fac Agric Kagoshima Univ 24:83–89

    Google Scholar 

  • Liu JR, Cantliffe DJ (1984) Somatic embryogenesis and plant regeneration in tissue cultures of sweet potato (Ipomoea batatas Poir.). Plant Cell Rep 3:112–115

    Google Scholar 

  • Martin FW (1968) The system of self-incompatibility in Ipomoea. J Hered 59:263–267

    Google Scholar 

  • Martin FW (1970) Self- and interspecific incompatibility in the Convolvulaceae. Bot Gaz 131:139–144

    Google Scholar 

  • Martin FW , Jones A (1971) Flowering and fertility changes in six generations of open-pollinated sweet potato. Am J Hortic Sci 96:493–495

    Google Scholar 

  • Morel G, Wetmore RH (1951) Fern callus tissue culture. Am J Bot 38:141–143

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Murata T, Hoshino K, Miyazi Y (1986) Plant regeneration from protoplasts of sweet potato. Jpn Breed 36:236–237

    Google Scholar 

  • Nishimaki T, Nozue M (1985) Isolation and culture of protoplasts from high anthocyanin-producing callus of sweet potato. Plant Cell Rep 4:248–251

    Google Scholar 

  • Nishiyama I, Miyazi T, Sakamoto S (1975) Evolutionary autoploidy in the sweet potato (Ipomoea batatas (L.) Lam.) and its progenitors. Euphytica 24:197–208

    Google Scholar 

  • Oración MZ, Niwa K, Shiotani I (1990) Cytological analysis of tetraploid hybrids between sweet potato and diploid Ipomoea trífida (HBK) Don. Theor Appl Genet 80:617–624

    Google Scholar 

  • Otani M, Shimada T, Niizeki H (1987) Mesophyll protoplast culture of sweet potato (Ipomora batatas L.) Plant Sei 53:157–160

    Google Scholar 

  • Serraf I, Sihachakr D, Nguyen Thi Lien Chi, Herbreteau C, Rossignol L, Ducreux G (1988) High rate of plant regeneration from cultured protoplasts of two medicinal plants: Solanum laciniatum Ait. and Solanum khasianum C.B. Clark. J Plant Physiol 133:498–501

    Google Scholar 

  • Serraf I, Sihachakr D, Brown S, Barghi N, Ducreux G, Rossignol L (1991) Interspecific somatic hybridization in potato by electrofusion. Plant Sei 76:115–126

    Google Scholar 

  • Sihachakr D (1982) Premiers résultats concernant la multiplication végétative in vitro de la patate douce (Ipomoea batatas Lam., Convolvulacées). Agro Trop 37:142–151

    Google Scholar 

  • Sihachakr D, Ducreux G (1987a) Isolement et culture de protoplastes de deux variétés de patate douce (Ipomoea batatas Lam.) Can J Bot 65:192–197

    Google Scholar 

  • Sihachakr D, Ducreux G (1987b) Plant regeneration from protoplast culture of sweet potato (Ipomoea batatas Lam.) Plant Cell Rep 6:326–328

    Google Scholar 

  • Sihachakr D, Ducreux G (1987c) Cultural behavior of protoplasts from different organs of eggplant (Solanum melongena L.) and plant regeneration. Plant Cell Tissue Organ Cult 11:179–188

    Google Scholar 

  • Sihachakr D, Ducreux G (1987d) Variations of morphogenetic behavior and plant regeneration in cultured protoplasts of Solanum nigrum. Plant Sei 52:117–126

    Google Scholar 

  • Sihachakr D, Rossignol L, Rossignol M, Prioul JL (1982) Analyse de la tubérisation chez la patate douce (Ipomoea batatas L.) à partir de boutures de feuilles isolées. Physiol Veg 20:53–71

    Google Scholar 

  • Sihachakr D, Haicour R, Serraf I, Barrientos E, Herbreteau C, Ducreux G, Rossignol L, Souvannavong V (1988) Electrofusion for the production of somatic hybrid plants of Solanum melongena L. and Solanum khasianum C.V. Clark. Plant Sei 57:215–223

    Google Scholar 

  • Sihachakr D, Haicour R, Chaput MH, Barrientos E, Ducreux G, Rossignol L (1989) Somatic hybrid plants produced by electrofusion between Solanum melongena L. and Solanum torvum Sw. Theor. Appl Genet 77:1–6

    Google Scholar 

  • Tempelaar MJ, Duyst A, De Vías SY, Krol G, Symmonds C, Jones MGK (1987) Modulation and direction of the electrofusion response in plant protoplasts. Plant Sei 48:99–105

    Article  CAS  Google Scholar 

  • Terry ER (1981) Les maladies virales de la patate douce et leur élimination. In: Agence de Coopération Culturelle et Technique (ed) La patate douce. Proc 1st Int Symp 13, Quai A Citroën- 75015 Paris, pp 171–177

    Google Scholar 

  • Tsay HS, Tseng MT (1979) Embryoid formation and plantlet regeneration from anther callus of sweet potato. Bot Bull Acad Sin 20:117–122

    Google Scholar 

  • Water WM Jr, Collins WW, Purcell AE (1984) Sweet potato protein. J Agrie Food Chem 32:695–699

    Article  Google Scholar 

  • Wu YW, Ma TP (1979) Isolation, culture and callus formation of Ipomoea batatas protoplasts. Acta Bot Sin 21:335–338

    Google Scholar 

  • Yang TH, Tsai YC, Hseu CT, Ko HS, Chen SW, Blackwell RQ (1975) Protein content and its amino acid distribution of locally produced rice and sweet potato in Taiwan. J Chin Agrie Chem Soc 13:132–138

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sihachakr, D., Ducreux, G. (1993). Regeneration of Plants from Protoplast of Sweet Potato (Ipomoea batatas L. Lam.). In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering IV. Biotechnology in Agriculture and Forestry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78037-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78037-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78039-4

  • Online ISBN: 978-3-642-78037-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics